¢) AND Gate

ANDE‘

Bh_Dé‘
d) NAND Gate

BD—®)§‘

6.4 Basic Laws of Boolean Algebra

Y = A+B>A-B
Y =AB

AB

a) Basic rules of Boolean addition are,

/
0+0=0
0+1=]
[ +0=1

1+1=]

Boolean addition is same as the logical OR.

<
u
3l
@




T Y

Digital Electronics 3 8.15

,—f"-‘_-—_7
] p) Basic rules of Boolean multiplication are,
6.0=10
| 0.:1=9 o
! 1.0=0

‘ 1 :1=]

Itis same as the logical AND.

Law 2 = (AB)C = A(BC)

3) Distributive Law e

¢) Three of the basic laws of Boolean algebra are,
1) Commutative Laws s
Lawl = A+B =B =+A
lLaw2—=A.B=B.A
2) Associative Laws _
Law 1 = A+ (B+C) = (A+B)=C
|
I
i

Law =A(B+C) = AB+AC
d) Absorption Laws el
N A+AB=A
DHA.A+B)= A

3) A+ AB = A+B
4) A.(A+B) = AB

¢) Consensus Laws v

: 1)ABfE.c-Bc=AB+.E.C

1) (A+B)(A+O)(B+C) = (A+B)(A +C)




R

M) Other basic laws are,
[y A+0=A a4
7 A¥l=]
3y A+ A=A (Idempotent)

4) A+ A= (Complernentary)

5y A.0=0 o

8 A=K -' ". 30
7y A.A=A (ldempotent)

8) A. A =0 (Complementary) /

9) A =A (Involuion)
10) A+AB=A

11) A+ AB=A+DB

12) (A+B)(A+C)=A+BC
g) Duality Theorem

The duality theorem says that, starting with a boolean relation, we can derive another
boolean relation by

1) changing each OR signto an AND sign.
2} changing each AND sign to an OR si1gn.

3) complementing any O or | appearing in the expression
Rule 1saythat A+0=A

Dualrelation A .1=A

0 L changing the OR sign to an AND signand by complementing the
togeta 1. b i

(e.g) Distributive law states that

AB+C) = AB+AC
By changing each OR and AND operation, we getthe dual relation.
A+BC=(A+B)(A+ C)



Digital Electronics Q 6.17

—
ch,rgnn’s Theorem

1) A_B=:\+E

2) A+B=A.B
plem: Veri fy all the laws with the help of truth table.

Introductmn to half 'ulder ‘lnd full 3d(]er

e—

Digital computers perform various arithmetic operations. The most basic operation

he addmon ot two binary digits. The four clementary operations are,

0+0=0

0+1=1
1+0=1
L+1=10,

The first three operations produce a sum whose length is one digit, but when the last
yperation is performed sum is two digits.

The higher significant bit of this result is called CARRY and lower significant bit
iscalled SUM=——

The logic circuit which performs this operation is called a half-adder and the circuit
‘which performs addition of three bits is a full-adder.

| s.y/ alf - Adder
\The half-adder operation needs two binary i inputs, augend and add end bits and two

bmavf outputs sum and carry. o
a) Block Schematic of Half Adder

A Cam} .
Half
Adder
B Sum .
Figure 6.13



/ Combinational Logic Circuits
i sUM-OF-PRODUCTS METHOD

4 shows the four possible ways t ‘
ﬁg;::c ¥s 10 AND two input signals that are in complemented and

R d form. These s h
m lemente . s¢ outputs are called T 3 s eac
f ’H"du"l(’"fﬂ! pﬂN{Nl‘f‘. :lhlc - ‘ li-\'L

tal product next to the input conditi

iy tons producing a high ; s

A and B are low: A B is high whe , ¢ a high output. For instance, AB 15 high
when . en A s low and B is high: : "

L are also calle I , 4 is high: and so on. The 5
roducts arlu. ll;; ¢ IL‘:‘ "llnhnr_m.\. Products A8, A’B, AB’, AB uri represented by 1:“02'“:‘"-““:“1
respectively. we suffix ¢ of m; ¢ T = ng. My. M2, ¢

mj i comes from decimal cquivs i ;
] g akes corre . ‘ ivalent of bing values
(l‘nblc 3.1) that m ikes corresponding product term high. q o inary ¢

2 { Y—ar 4 . o=
B —L— n — AB AB __)—.m
() () '
(M

B
(b) (d)

Flg. 3.4 ANDiIng two variables and their complements.

The idea of fundamental products applics to three or more input variables. For example, assume three

input van les: A, B, € and l'l\Lll ‘uu.nplumnls. There are cight ways to AND three input varnables
and thetr complements resulting in fundamental products of

ABC.ABC.ABC.,ABC.ABC.ABC. ABC.ABC

——

\} 18C

—

—— O\ BC
——

~ ol

i

—A \ ABC
M| , ABC

™ :’;‘:.‘.l
it =

(a) (b)

Fig. 3.5 Examples of ANDing three variables

(c)
and their complements.

The above three varable minterms

. can alternatively be represented by nig. 7. /12 ms, my, ms. Me.
and my respectively. Note that.

for n variable problem there can be 27 pumber of minterms.
Figure 3.52 <shows the first fundamental product, Fig. 3.5b the second. and Fig. 3.5¢ the third. (For
practice, draw the gates for the remaining fundamental products.) for twice variable case.

Table 3.2 summanzes the fundamental products by listng each one next to the input condition

Table 3.1 Fundamental Products for Two Table 3.2 Fundamental Products for Three
Inputs Inputs
A B Fundamental Product A B C \Fundamenta! Products
i ° AB 0%, 0. & \ AisC
0 1 AB 0 0 1 ABC
1 0 AB 0 1 0 \ ABC
1 1 AB 0 1 1 ABC
1 0 c ABC
1 4] 1 \ ABC
3! 1 0 \ ABC_:
1 1 1 ABC




84

~

- TT————____ Digital Principles and Applications
—

that resy)qg inah
results in gp output of
Y=ABC=1-0-0=1
S -
Um-of-Products Equation
Here is how

y A 3 .
to do s | to get the sum-of-products solution, giver
S locate cach output 1 in the truth table and write down th

igh output. For instance. when A = 1, B = 0 and

C = 0, the fundamental Prodyg

1 4a |n]th [ﬂhlc “kc Tﬂhlc 3.3, What You hﬂ\'c
c l'undumcnlul product. For i"‘“ﬂcc

The corresponding r“"‘l“mcmal

the first ouy =1
) Put 1 appears for an input of A = 0, 8 = 1. and € = 1
F - Lt L s | i = 1. The ¢ :
product is A BC. The next output | appears for A=1I. 8= “( gl . d On;c‘mnd'"z
an identify all the fundamental prodycyg

fundamental product is A# C. Continuing like this, you ¢
as shown in Table 3.4. To get the sum-of-products ¢q
fundamental products of Table 3.4:

Altermate representation of Table 3.3
Y = F (A B, O
. 5 “re 10N ”
where ‘X' symbolizes summation or logical OR.UPU-"I;: ¢
minterms and ¥ = F(A. B, €) means Y is a function of thrc

Table 3.4 Fu

uation,

y=ABC+ABC+ ABC + ABC

- 5 3.9, 0.
Jat is performed on correspondin

Boolcan vanables A, B and C.

all you have o do i1s OR the

(3.17)

7)

ndamental Products for Table 3 3

Table 3.3 Design Truth Table
0 0
0 0

o 3 ? 0 0 0 1 0

g 1 0 0 0 1 0 0

0 1 1 1 0 1 1 1 = ABC

1 0 0 0 1 0 0 0

1 ? (; 11 1 0 1 1 — ABc

: 1 1 1 1 1 0 1 — ABE
Logic Circuit 3 — 1B8C
After you have a sum-of-products equation. you can g.__J ) |
derive the corresponding logic circuit by drawing an ;
AND-OR network, or what amounts to the same _4@ f
thing, a NAND-NAND network. In Eq. (3.17) each E-:l_J o
product is the output of a 3-input AND gate. c } L.«
Furthermore, the logical sum Y is the output of a 4- ) N u—— N Y
' w draw the logic “— \48C | |
input OR gate. Therefore, we can dr e log 3 | _ :
circuit as shown in Fig. 3.6. This AND-OR circuit is c— —— i
one solution to the design problem that we started
with. In other words, the AND-OR circuit of Fig. 3.6 4= ane |

, y

has the truth table given by Table 3.3. g ! | e

We cannot build the circuit of Fig. 3.6 because a
4-input OR gate is not available as a TTL chip (a

Fig. 3.6 AND-OR solution.




— Combinationay Logic Circuits =
integrated circui 1 AND

sy:,s;;ﬂl; S:\ND L_Ciwu“ M:::()_i..T['ai:up;;n4-:nput: N gate is. Figure 3.7 shows the logic circuit as

: y . . numbers. Als 1 | : : s

armlP of wires carrying logic signals, B R Wi togic sgnals v

In Fig. 37 . E g d
. 3.7, the bus has s I . Is A. B, C.
wiid their complements. erocompulcrs are bus-or SR EHEREES S0 BRiLH: Ingfs SEEHE

Sy panize sani : ‘ ut signals
¢ e logic circuits are connected 1o hyses ganized, meaning that the input and outp g
Q h
% <¢ a three-valuable truth table has g high output 1 afeia 100, and 110,
:\‘I![:-[:n the sum-of-products circuit? put. Tor” thicse laput wanditions: 100, ‘010: '
Solution
Here are the fundamental products:

000: ABC

010: ABC

100: ABC

110: ABC

When you OR these products, you get

Y =ABC + ABC + ABC + ABC

The circuit of Fig. 3.7 will work if we reconnect the input lines to the bus as follows:
: pins | and 3

|

% : pins 2 and 10

¢ :pins 13,5, 11, and I3
A :pins 9 and [

B : pins 4 and 2

g
L
LEI

"
(=2 =]
o
¥

1.

\

\ i i

[ )12 l
| 13—
| i 7410




86
_‘_-h_h‘—.

. Digitay Principles ang Applications
X-AMPLE 3.5

Slmpnr)

§ !hL‘ Bl)l‘llc

an ¢qu
So!ulion

ation n Ex

ample 3.4 und describe the logic circuit,
"he
Booleqn CQuation

e & 3 Y=ABC + ABT + ABC + ABC
Y Common g cach term, factor as follows:

Wit - )’-_— —_j + A I 3 B _
Again, lactor g pet (@E+ABYAB+ABC

Y=|A(B+ B)+ A(B + B)|C
Now

v Stplify the foregoing as follows:

‘ Y= [A(]) + AUDIT = (A = AT
or

VY =C

This linal cquation means that you don’t even need a logic circuit. All you need is a wire Connectip
nput C 1o output ¥, .
The lesson is clear. The AND-OR (NAND-NAND) circuit you get with the sum-of-
ot necessarily as simple as possible. With algebra, you often can factor and re
cquation 1o wrive at a simpler Boolean equation. which means a simpler log
circuit is preferred because it usually costs less to build and is more reliable

products method |
duce the SUM-of-prodycyg
Ic circuit. A simpler logic

T —
SELLE=TEST
.-j:‘: ﬁ\\: 4. How many fundamental products are there for two variables? How —_—
!\'\ A Y three variables?
) =) 5. The AND-OR or the NAND-NAND circuit obtained with the sum-of-
b E/;-HJ‘-:J" products method is always the simplest possible circuit. (T or F)

3.3 TRUTH TABLE TO KARNAUGH MAP

A Karnaugh map is a visual display of the fundamental products n

solution. For instance, here is how to convert Table 3.5 into its Karnaugh map. Begin by drawing
Fig. 3.8a. Note the variables and complements: the vertical column has A followed by A. and the
horizontal row has B followed by B. The first output | appears for A
fundamental product for this input condition is

eeded for a sum-of-products

= 1 and B = 0. The
AB . Enter this fundamental product on the Karnaugh
map as shown in Fig. 3.8b. This | represents the product AB because the 1 is in row A and column
B

Similarly. Table 3.

3 has an output | appearing for inputs of A = 1 and B = 1. The fundamental
product is AB. which can be entered on the Karmaugh map as shown in Fig. 3.8c. The final step
in drawing the Karnaugh map is o enter 0s in the remaining spaces (see Fig. 3.8d).




A

JR— Combinational Logic Circuits - 87
Table 3.5

o = Table 3.6
ik ¥ A B c Y
0 : : 0 0 0 0
1 1 1 0 1 0 1
i d 0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

In terms ol decimal equivalence each position of Karnaugh map can be drawn as shown in
Fig. 3.8b. Note that, Table 3.5 can be written using minterms as ¥V = L m(2. 3) and Fig. 3.8¢
represents that.

BB BB B B B

A 110 1 a1 a Al o 0

| |2 23 i ([l i 1 !
(«) (b) (c) (d) (c)

Fig. 3.8 Constructing a Karnaugh map.

Three-Variable Maps -~

Here is how to draw a Karnaugh map for Table 3.6 or for logic equation, ¥ = F(A. B, O) =
Zm(2.6.7). First. draw the blank map of Fig. 3.9a. The verical column is labeled AB. AB, AB,
and AB. With this order, only one varniable changes from complemented to uncomplemented form
(or vice versa) as you move downward. In terms of decimal equivalence of each position the
Karnaugh map is as shown in Fig. 3.9b. Note how minterms in the equation gets mapped Into
corresponding positions in the map.

e ¢ € € cC C €
AB AB| 0 1 4B AB{o 0
AB ABl2 3 1B | | 332 T
AB AB| 6 7 Bi1 45; .
AB AB| 4 3 AB| AB l 0 0

(a) (b) () (d)

Fig. 3.9 Three-variable Kamaugh map.

Next. look far output Is in Table 3.6. Output s appear for ABC inputs of 010. 110 and 111. The
fundamental products for these input conditions are ABC. ABC. and ABC Enter 1s for these
products on the Karnaugh map (Fig. 3.9b).




88 gital Princi :
Digital Principles and Applications e
F.Thr: final step is to enter Os in the remaining spaces s i
(Fig. 3.9¢). y B c D Wy
Four-Variable . 0 . o 0 oz
Maps £ 0 (1, : ‘
Many digital computers and systems process 4-bit g g : ? 0
nl!mhcrs. For instance, some digital chips will work 0 1 0 0 g
with nibbles like 0000, 0001, 0010, and so on. For ¢ 1 0 ) 0
this reason, logic circuits are often designed to handle 0 1 x 9 1
four input variables (or their complements). This is ¢ 1 : : :
Why you must know how to draw a four-variable 1 v ) 0 0
Karnaugh map. 1 o 1 : :
Here is an example, Suppose you have truth table 1 0 : ? 0
like Table 3.7. Star by drawing a blank map like 1 ? 0 0 0
fjg_. 3.10a. Notice the order. The vertical column ?s : 1 5 1 g
A_B.A B.AB, and AB. The horizontal row l_'\ 1 1 } ¢ !
CD,CD,CD, and CD. In terms of decimal cqui- 1 ! . ! .
valence of cach position the Karnaugh map 1. s -

shown in Fig. 3.10b. In Table 3.7, you have output
Is appearing for ABCD inpults of 0001, 0110, 0111, and 1110. The fundamental products for theg.

input conditions are ABCD, ABCD. ABCD, and ABCD . .-\f.lcr entering Is on ,lhc ]\ar.naugh map,
you have Fig. 3.10¢. The final step of filling in Os results in the complete map of Fig. 3.104.

SELF-TEST

6. What is a Karmaugh map? A .
7. How many entries are there on a four-vanable Karnaugh map?

CD Cp CD CD Ch CDp CD CD Cb Cpb CD CD b €b €D D

AB ABlo 1 3 2 AB|lo 1 3 2 ]E!o 1 0 o0

AB iB|l4 S5 1 6 B4 5 7 6 ABl0 0 1 1

4B AB{12 13 15 14 AB|12 13 15 14 AB|0 0 o0

AB AB|8S 9 11 10 AB|8 9 11 10 .4§10 0 0 0
(a) (b) (c) {d)

Fig. 3.10 Constructing a four-variable Karnaugh map.

Entered Variable Map

As the name suggests, in entered variable map one of the input vanable is placed inside Kamaugh
map. This is done separately noting how it is related with output. This reduces the Kamaugh map
size by one degree. i.e. a three variable problem that requires 2% = 8 locations in Kamaugh map will



T

e
—

ey S

Combinational Logic Circuits =
-1 = 4 locations in entered varig -
" i cred variable mg i i i 1
¢ 2 : P- This technique is particuls seful for mapping
f-lpl:]cms with more than four input varigbles. e s pandediartyy p
o

¥ We illu.'-lr.'n‘u the ICIL:II(I—I‘II:WC by tuking a three variable example, truth table of which is shown in

1‘;|h|‘3 3.6. Let sqclnlu':.sl_l ' .|.~.”m'r‘tp entered variable and see how output Y varies with C for different

-mnhinulinm of U[_u'; )\,u: \(-].ll:l.lh]l:_f.‘- Aand . Fig. 3.1 1a shows e relution draws from Talle 3.6,

L-m_ Al = 00 we finc Ll Ly .m(‘! |\.. not dependent on C. For AB = 01 we find Y is complement
of C thus e G tvlnl: : T 5!111|lnrly. for AB =10, ¥ = 0 and for AB = 11, ¥ = 1. The
‘-nrn‘-‘l""“l"'l’ enteree ‘\.lr;;l.h'lc;n:lp is ahn'wn in Fig. 3.11b. If we choose A as map cntered variable
we have lll.l‘h: 5'“"?1"1 "'] 'Ll' : Ale ’fh““"'"g relation with ¥ for various combinations of BCy the
t‘Om.,;pundmp. entered variable map is shown in Fig. 3.114d.

A BlY . F g
0 0 ”““(')‘
0 1 C
1 0 0
1 1 1
() (h) (dy

Fig. 3.11 Entered variable map of truth table shown in Table 3.6.

3.4 PAIRS, QUADS, AND OCTETS

-

Look at Fig. 3.112a. The map contains a pair of 1s that are horizontally adjacent (next to each other).
The first 1 represents the product ABCD: the second 1 stands for the product ABCD . As we move
from the first 1 to the second 1. only one variable goes from uncomplemented to complemented form
(D to D ): the other variables don’t change form (A, B and C remain uncomplemented). Whenever
this happens, you can eliminate the variable that changes form.

CD CD CD CD CD CD CD CD
AB[O 0 o0 0 ABl0 o0 o0 0O
ABlO 0 0 0 4Bl0 0o 0 ©
ABlO 0 1 4Blo o @
AB|O 0 0 0 AB\ 0 0 0 0O

(a) (o)

Fig. 3.12 Horizontally adjacent 1s.

Proof
The sum-of-products equation corresponding to Fig. 3.12a 1s
Y = ABCD + ABCD

which factors into _
Y = ABC(D + D)




y
9 y
——— Digital Principles and Applications +5'"
Since D i ¢
.. '.\ (’), . v . : E . !
Red with s complement, the equation simplifies 1€ il’c
Y = ABC ke B
, sum-of-prod
In gencr: . i 5y means e il
c,(] !:’L_n(,;d[,.“ pair of horizontally adjacent Is like (those of FIE- 3c.ll;;j\'-'" above: ‘
ll;:lfmn will have o variable and a complement thal drop ou! .f\tr;#rn in Feg- 3.12b. Tw” adjacent ad
or casy identification, we will encircle (wo adjocent 1% i° 3.1 JJance 1hat one variable and y, A
we can tell b * other words. an encircied pyy .
ducts, ABCD ang |

Is such as thes : )
1ch as these are called a par. In this Wiy oo
Boolcan cquation: arate pro

L‘(.)HIP]L‘IIHCIII will drop out of the corresponding T . |
of l.‘r‘_hkc those of Fig. 3.12b no longer stanid for the OR”T" b " aced pre g
" B s ol s, Mg o e rcprcsg‘ﬂil l%ml arce vertically adjacent. These ¢
Here s another example. Figure 3.1 Ghows a pair nl' O hanges from .“ﬂCUmplemcn‘lq] 3
correspond (o ABCD and ABCD . Notice (hat only STE VI‘IS‘I‘.w",er e cl:mmulcd legchfa“;a"y‘
complemented form (B 1o i), Therefore. R "
lc“\'i"g a reduced prn(luu of ACD .
- ~5 D CP ch
ch ¢p Cp D , fj};,__,,T___T
5lo o0 0 0 aplo 9 (
s y 0 | )
aplo 0 0 0 ap| o _0 .
wmlo 0o 0 AB |0 0
: - 0
plo o 0 aplo 0 0
'. ) (b)
(a ) =
ch Cp CD cD cp cp €D cD
_ TR 0
1o 00 0 q8l0 O 0
‘ 1 0
8lo 0o 0 0 aglo @D |
0 0 (
481 0 0 0 0 AB i
B 1B o 0
Bl D o0 :
(¢) (d)

Fig. 3.13 Examples of pairs.

orizontally or vertically adjacent ls, you can eliminate the vanable that
and uncomplemented  form. The remaining variables (or their
¢ in the single-product term corresponding to the pair

goes from complemented to
the other variables remain the

More Examples
Whenever you see a pair of h

appears in both complemented

complements) will be the only oncs appearin
of 1s. For instance. a glance at Fig. 3.13b indicates that B

uncomplemented form when we move from the upper to the lower ki
3.13b, represents the product A CD. Likewise, given

same. Therefore. the encircled pair of s 1n Fig.
the pair of Is in Fig. 3.13c. the only change '« from D to D. So the encircled pair of 1s stands

for the product ABC.



Combinationa Logic Circuits =

f more thati .0fi¢ palr EXisty o i Karnaugh map
[can equation. For instance,
Boﬂ [ '
ai
ine upPer P

¥ou can OR the simplified products to Seﬂc
3.13d represents the simplified product ACD .

Boolean equation for this map is

the lower pair of Fig.
stands for A BD. The corresponding

Y=ACD + App

auad .
quad 18 2 grovy of four s that are horizontal)
“hown in Fig. 3.14a. orin the form of 4 squ
i ¢ because it leads to a simpler product

Y or vertically adjacent. The |s may be end-to-end.
are, as in Fig. 3.14b. When you sce a quad. always

peirele i - In fact, a quad climinates two vartables and their
rnmplrmc'ms.
ch ¢ b Cbh Ch T v ch o

ABlo o o o ABlo o o ¢ o o 0 ©

e 0 ABlO 0 o ¢ Aglo o 0 0

- @ ABl 0 0 AB C :

e ABl 0 o ABElO 0 o0 0
. 4 (<)

Fig. 3.14 Examples of quads.

Herc is why @ quad climinates two variables and their complements. Visuahize the four 1s of
Fig: 3.14a a3 PG Patrs (see Fig. 3.1dc). The first pair represents ABC : the second pair stands for
ABC. The Boolcan equation for these two pairs is

Y = ABC + ABC
This factors into
Y = AB(C +C)
which reduces 1o
Y = AB
So. the quad of Fig. 3.14a represents a product whose two variables and their complements have

dropped out. -

A similar proof applies to any quad. You can visualize it as two pairs whose Boolean equation
leads to a single product involving only two variables or their complements. There’s no nrced to go
through the algebra each time. Merely step through the different Is in the quad and determine ‘j'.'hn:h
two \‘:u‘iablcs go from complemented to uncomplemented form (or vice versa): these are the vanables
that drop out. _

For instance, look at the quad of Fig. 3.14b. Pick any 1 as a starting point. When you move
horizontally. D is the variable that changes form. When you move vertically. _B c?mngcs form.
Theretore. ‘the remaining variables (A and C) are the only ones appeanng in the simplified product.
In other words. the simplified equation for the quad of Fig. 3.14b is

Y = AC




92 Digital Principles and Applications :

The Octet
)k for: the octel. This is a group

Besides airs a 2 .

2 S P ‘nd uads . . aditce s O Joe i N
P quads, there is one more group to adjacent Is like this climinates three variable,
¢ Fig. 3.15b). The equatio

of cight Is like those of Fig. 3.154 on the next page. An octel
and their complements, Here's why. Visualize the octet as two quads (¢
for these two quads is

Y = ;‘1(6 + AC

&p cp cp_€D

ch ch ch D -
Ab [0 0 o o qalo 0 0
AB dplo 0 0 0
Al Al D
AR Al
b
() (b)
Fig. 3.15 Example of octel.
After factoring,
Y = A(C + O)
But this reduces to
y =4

¢ variables and their complements drop out of the corresponding

w on don’t bother with the algebra. Merely step
nee form. These are the vanables

So the octet of Fig. 3.15a means thre

product.
A similar proof applies to any octet. From no

through the 1s of the octet and determine which three variables cha

that drop out.

SELESTEST

8. On a Kamaugh map, two adjacent Is are called 2

¢ A

i\ D i & _9
D “3 0. On a Kamaugh map. an octet contains how many Is?
)'\? e

3.5 KARNAUGH SIMPLIFICATIONS

As vou know, a pair eliminates one variable and its complement. a quad eliminates two variables
and their complements, and an octet eliminates three varables and their complements. Because of
this, after you draw a Karmaugh map. encircle the octets first. the quads second. and the pairs last

In this way. the greatest simplification results.

An Example
Suppose you have translated a truth table into the Kamaugh map shown in Fig. 3.16a. First. look




s

e — . Combinar!onal Logic Circuits
o oetets. 'l"hcrc unf‘nnlilfc, ,NC“{ Iunnk. for quads, Whep You find them, encircle
B nd encircle pairs. }Qu “‘_‘ "llllh Ctlnccll)ig'(lu armve at Fig. 3.16b.
The pair represents the: simplified Product AR the lower quad wands
e right represents .CI_J. By ORing these simplified products, we get
m:nc*l“““lmg 1o the entire Kurnuugh map: -
corre:

93

them. Finally, look

for AC. and the quad
the Boolean equation

(3.18)

(b)

Fig. 3.16 Encircling Octets,

quads and pairs,
overlapping Groups

You are allowed o use the same |

more than once
representing the fundamental product ABCD is

e. Figure 3.173 lustrates this idea. The 1
equation for the overlapping

part of the pair and pan of the octet. The simplhified
groups is

Y=A+ BCD
It is valid to encircle the 1s as shown in Fig.

(3.19)
complicated equation:

3.17b. but then the 1solated 1 results in a more
Y=A+ ABCD

So, always overlap groups if possible. That is, use the 1s more than once to get the largest groups

you can.

CDh Cb ¢p D CD Cb ¢D CD
ABlO 0o 0o o ABl 0O 0 o

AB| 0 0 0
AB

(a)

0

(b)
Fig. 3.17 Overiapping groups.




——w'
94
——— —-—"_""_“—‘**-“—'——-—--.-_

Di
qital Prfnclp_!gf and @pllcatfons
Rolling the Map - N

—H-.‘__L—__'"—h—-._

- 3 --‘-_“-h.“ ‘
?19'0“]“ l!""E 10 know abouy jg rolling. Look g i
this equation: d at Fig. 3.184 on (e next page, T ;

fic. c Patry resyly
Y= 86D 5 i
Visualize pi ki “HeD =B
S f‘plIC 'ng up the Karnaugh Map and rolling | )
= are \1.\u$ull'f.mg correctly, you wij realize 4 ng it so 'lh:ll the Ieft side touches (he Fight i
r_'lw half circles around g, phir. s '-[ ¢ Iu., lW[‘l pairs actually form a quad. T, mdic."c g
ig. 318D hys i — v Shown in Fig, 3.18b, From this viewpoint, the qu,,:hl"'
ot (][
Y = 8D
(321
€O Cp cp p O CD Cp ch
AB| 0 0 0 0 AB| 0 0 0 0
AB 0 0 Al 1\ o o [i
AB 0 0 Al | 0 0 |
AB[ O 0 o o B O 0 0 o0
(a) (b)

Fig. 3.18 Rolling the Karnaugh map.

Why is rolling valid? Because Eq. (3.20) can be algebraically simplified to Eq. (3.21). The proof
starts with Eq. (3.20):

Y =BCD + BCD
This factors into

Y = BD(C + C)
which reduces to

Y=BD

But this final equation is the one that represents a rolled quad like Fig. 3.18b. Therefore. 15 on the
edges of a Kamaugh map can be grouped with |s on opposite edges.

More Examples

If possible, roll and overlap to get the largest groups you can find. For instance, Fig. 3.19a shows
an inefficient way to encircle groups. The octet and pair have a Boolean equation of

Y=C+ BCD
You can do better by rolling and overlapping as shown in Fig. 3.19b; the Boolean equation now is

Y=C+ BD




Combinational Logic Circuits

95

_'__,_...-——-—-'—

AR o .0

AR 0

AR 0 @

Al 0 0
(a)

ch ¢p ¢p ¢h

Af 0 0

Al o N

AB 0 (,

Al & "D
(b)

Flg. 3.19 Rolling and overlapping.

T Cr eXa . Fi " _ )
Here 18 mother example. Figure 3.20a shows an incfficient grouping of 1s: the corresponding

‘.ql.l‘.lli(‘" s

Y=C+ACD+ ABCD

ch ©p ¢p CD

r‘l’ Ch CD CD 26 2p cp 6
AB . AB o 1 A8 | o &
AB 0 1B 5 0 <n o \1
AB 0 0 °AB & i P 5 B
AB o AR D o T 3% 0 Tl

(a) (b) (©)

Fig. 3.20 Different ways of encircling groups.

“' WwWe [‘U” ;lnd

overlap as shown in Fig. 3.20b. the equation is simpler:

Y=C +AD +ABD

It is pmsiblc Lo

V=C +AD+BD

Compare this with the pr

simplicity. Either grouping (Fig.

Eliminating Redundant Groups

After vou have finished encirclin
already used by other groups.

are
Fie. 3.21b. Next., group the remaining

he Is of the quad are used by the pairs.
3.21d. As you see.

o get Fig.
roduct than Fig. 3.21c: therefore. Fig. 5.-

group the Is as shown in Fig.

3.20c. The equation now becomes

eceding equation. As you can sce.
3.20b or ¢) is valid: therefore, you

¢ groups, eliminate any re
Here is an example. Given Fig.
ls into pairs by ov
Because of this. the

all the ls are covered
3714 is the most efficient way to group the 1s.

(3:22)

the equations are comparable in
can use whichever you like.

dundant group. This is a group whose Is
3.21a. encircle the quad to get
erlapping (Fig. 3.21c). In Fig. 3.21c, all
quad is redundant and can be eliminated

by the pairs. Figure 3.21d contains one less




Digital Principles and Applications

CO Th cp ch
i

Chb €p ¢cp cb

Cr

5 ©p CD €D

ABl o ¢ _— B

_ g1 w0 AB[ o o0 1 9 AB AB1 0 0 0
3 = F

AR U An| o 0 A Bl 0
g N A | 0 | AB 431 0 (2) <TES
1 o | 0O 0 anl oo | 00 Al Al 0 \1] o 0

{a) (h) (c) (d)
Fig. 3.21 Eliminating an unnecessary group.
Conclusion

plifying Boolean equations;

Heee 1 summary of the Karnaugh-map method for sim .
, | product that produces a | output in 1,

. Enter a1 on the Karnaugh map for cach fundamenta
truth table. Enter Os clsewhere.
Encircle the octets, quads, and p
possible,

3. M any isolated 1s remain, cencircle each,

4. Eliminate any redundant group.

5. Write the Boolean eqlation by ORing the products correspon

airs. Remember to roll and overlap to get the largest Eroups

ta

ding 1o the encircled groups,

Simplification of Entered Variable Map
This is similar to Karnaugh map method. Refer to entered variable maps shown in Fig. 3.1, The
groupings for these are as shown in Fig. 3.22a and Fig. 3.22b. Note that in Fig. 3.22a 7 is Zroupegd
with | to get a larger group as | can be written as I =
Fig. 3.22hb. )
Next, the product term representing each group is obtained by includmg m;p’entcred vanable ip
the group as an additional ANDed term. Thus. group 1 of Fig. 3.22a gives B.(C') = BC and group
2 gives AB.(1) = AB resulting ¥ = BC' + AB.

1 + C. Similarly A 1s grouped with | i,

In Fig. 3.22b, group | gives product term B.(4) E_#8 Cc_C B B
= AB and group 2 gives BC'.(1) = BC’sothat Y= 4| 0 (%\ Ell 0 0 R y%\
BC’ + AB. The final expression is same for both as ' | — 2 L
they represent the same truth table (Table 3.6). J R @ o '}b® )
Note that. entered variable map shown Fig. 3.22c (a) (b) ©
for a different truth table (Take it as an exercise to X M———
Fig. 3.22 Simplification of entered

prepare that truth table) has only two product terms
and doesn’t need a separate coverage of 1. This is
because one can write | = C + C" and C is included
in one group while C" in other. The output of this map can be written as Y = AC + BC'.

variable map.

EXAMPLE 3.6
What is the simplified Boolean equation for the following logic equation expressed by minterms?

Y=FA B.C.D) = ¢ 10; 115 12, 13, 14, 15)

Tm(7. 9



Combi, 1
P national Logic Circyits =

uttort h minterm mak
-, know, cach n Wakes correspong,
we kno ~quation. There are >hding location in Karn: . >
he E1ven cquation. ATE NO_octets, but there |y augh map 1 and thus Fig. 3.23a represents
t

d two more quads (xee Fig, " quad as shown in Fig. 3.23b. By overlapping. we
d pair (Fig. 3.23d). Fing N encircle the - o ]

o"‘rlnppul p1|::1l( t:-u' of [-i) l]‘r,';l‘liy. there are no redundant “L EREIniRg ik gy making 1 pad e
’ . ront ¢ g 32 * . . PTOUpS,
The ht:]ﬂ o ‘(.,l whila lht' . d corre sponds 1o 4 simplified pn.‘:;:,c. Afl. The d on the right

. 9 FALL S -
responds s’ . fis € on the left stangds for AD. The n: RS squa‘re Qs .
gets. we get the simplified Boolean cquation: A ¢ pair represents BCD. By ORing these

can fin 123(.] “‘c C

co
prod
i}

,,\ }’ - A,f + AC + AD + ”(.D

6,8 (3.23)

e

ch i[) ch ¢h

) CD CDh CD CD < -
/_w “ e ® Db ABL 0o o o o == C.*\ >
ABL 0 0 1 0 ABl 0 o | 0 . ;<5 L C‘a
ABL V0 TS e P I » " S5 b
ABL 0 | | Bl o 11 = ¢’

(a) (b)

Cch ©b b D

ABL 0 0o o o

(d)

Fig. 3.23 Using the Kamaugh map.

SELF-TEST

10. Write the sum-of-product terms for the entries in Fig. 3.18. Use Boolean
algebra to simplify the expression.

3.6 DON'T-CARE CONDITIONS

In some digital svstems, certain input conditions never occur during normal operation: therefore, the
comesponding output never appears. Since the output never appears, it is indicated by an X in the
truth table. For instance. Table 3.8 on the next page shows a truth table where the output is low for
all input entries from 0000 to 1000, high for input entry 1001, and an X for 1010 through 1111.
The X is called a don't-care condirion. Whenever vou see an X in a truth table, you can let it equal

either 0 or 1, whichever produces a simpler logic circuit.




Digital Principles and Applications
—

Table 3.8 Truth Table with Don't
Conditions Care

98

Figure 3.24a shows the Kurnaugh map of Table 3.8

|
g with don't cares for all inputs from 1010 to 1111
f These don’t cares are like wild cards in poker because

you can let them stand for whatever you like. Figure
3.24b shows the most efficient way to encircle the 8
9, Notice two crucial ideas. First, the 1 is included in d
b quad, the largest group you can find if you visualize
1 all X's as Is. Second, after the 1 has been encircled.
E‘ all X's outside the quad are visualized as 0s. In this
| way, the X's arc used to the best possible advantage.
{ As already mentioned, you are free to do this becausc
5 don't cares correspond to input conditions that never

- appear.

The quad of Fig. 3.24b results in a Boolcan
equation of

Y = AD

The logic circuit for this is an AND gate with
inputs of A and D, as shown in Fig. 3.24¢. You can
cheek this logic circuit by examining Table 3.8. The
possible inputs are from 0000 to 1001 in this range
a high A and a high D produce a high ¥ only for input condition 1001.

Tt " -000O0-«wasd0000
s}

c D
0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1

)q)g)cxxx-ooooooooo/-q

A
0
o
0
0
(o}
0
0
0
1
1
1
1
1
1
1
1

D cn ch ch

cD Ch ¢D CD
38l 0 o o0 0 a8l 0o o o0 0
4 /2 CD

0 AB 0O 0

1Bl 0 0 0

AB| X X X X

4Bl 0 1 x X

(b)
Fig. 3.24 Don't care conditions.

(a)

Remember these ideas about don’t-care conditions:
1. Given the truth table, draw a Karnaugh map with Os. Is, and don’t cares.
Encircle the actual Is on the Karmaugh map in the largest groups you can find by treating the

don't cares as Is.
Is have been included in groups, disregard the remaining don’t cares by

3. After the actual
visualizing them as Os.

EXAMPLE 3.7
3.8 has high output for an input of 0000, low output. for 0001 to 1001, and don’t cares

Suppose Table 3.
for 1010 to 1111. What is the simplest logic circuit with this truth table?




e ———
Sammane o S

R ———
B —

Combinatije
nal : :
— W do

n
G‘O‘u”o as a |
ith table has a | output only for the ;
»‘Efﬁ_ Figure 3.25a shows the Kur::umlpul condition 000q The corresponding fund | il
i ~ h ma = o cSponding  tundamental produc
)11, and X's for inpu P with 4 g 1 pr
o I puts 1010 o 11y In this cae ]m‘:‘fd(l)l:;:lIundumenml product, 0s for inputs
T cares are of no help. The best we

to encircle the isolated | wh ;
0 Ilc ”

reating (he don’t cares s 0s. So, the Bool tion 1

5 Us. 5o, the Boolean equation is

Iy <
|l‘ﬂ|
can do 1>
Y=ABCD
+ 3.25b shows the logic circuiy, The d-input AND
AY) 3
4

Fi[:"“ .
B=0C=0 and p = 0.

L~.1m|i“"‘“ A =0, At produces a high output only for the input

@D 0 0 g )
A A BTDH

ABL 0O 0 o g L_ _Jh

.-rlli x ' w " I ‘ i D— }.

ABl 0 0 « .

i (b)
Fig. 3.25 Decoding 0000.

‘—’-._-__7

EXAMPLE 3.8

Y implest logic circuit for following logic eauar: ; . -
Give the simp 8 l Ing logic cquation where d represents don't care condition for

following locations.
F(A. B. C. D) = ©m(7) + d(10. 11, 12. 13. 14. 15)

Solution

Figure 3.26a is the Kamnaugh map. The most efficient encircling is to group the Is into a pair using the

doa't care S SHOWR. Since this is the largest group possible, all remaining don’t cares are treated as 0s.

The equation for the pair is
Y = BCD

and Fig. 3.26b is the logic circuit. This 3.input AND gate produces a high output only for an input of

I, and D = | because the input possibilities range only from 0000 to 1001,

A= O, B = L C = 0
CD CD CD CD
AB| 0 0 0 0 1B C D
Al 0 0 (1) 0 PN re—
| | e—— —Y
4B b 5 b x i } ’ f_' P
.H_i’ 0 0 x e

(a)

Fig. 3.26 Decoding 0711.




100
Digital Principles and Applications —_—

SELF-TEST

[1. What is meant by a don't-care condition on 2
indicated? o
. : Coenit si ification’

12. How can using don't cares aid circuit simpli

Karnaugh map? How is

3.7 __PRODUCT-OF-SUMS METHOD ~~ h N
: : N, table that summarizes the desireq
With the sum-of-products method the design starts with a truth R St

. . able nto
input-output conditions. The next step is to convert th ll"ull—l nh!'l: AN zadialent
cquation. The final step is to draw the AND-OR network or 16

entif » fund: :

The product-of-sums method is similar. Given 4 truth :..-1hl'c. y“:,j-[[:j;:lIrllfr)([lt:l(;:lirf-hf:]nim:(:u::;:“
needed for a logic design. Then by ANDing these sum.\. '\l.)ulg-lwccn lhc two approaches W')}I:
corresponding 1o the truth table. But there are some d.ffcrcnc:c'-* 7; output 1 for the crurrcsp")ndill:
the sum-of-products method, the fundamental product pr‘)dlfucsl'.l . At Dmpu”g]
input condition. But with the product-of-sums method. the li::ntj.l[t::; d‘ls‘.[inc(ion e e
for the corresponding input condition. The best way to understan ple.

(o

Converting a Truth Table to an Equation .
to get the product-of-sums equation.

1 . - ’ po {
+ like Table 3.9 and you wan . !
e lik nd write down its fundamental sum.

t 0 in the truth table a :
ot : 0.B8=0.and C= 0. The fundamental sum for these

an output zero for the corresponding input

Suppose you are given a truth tabl
What you have to do is locate eac
In Table 3.9. the first output 0 appears for.A
inputs is A + B + C. Why? Because this produces

condition: Y=A+B+C=0+O+O=0
Table 3.9
A = = Y Maxterm
5 0 0 = A% B+ € Mo
0 0 d 1 o
0 1 2 1 "
0 1 1 0> A+B+C Ms
1 0 . 1 o
1 0 1 1 Ms
| | 0 0> A+B+C Mg
1 1 1 1 M,

e L

The second output 0 appears for the input condition of A = 0. B = 1. and C = 1. The fundamental
sum for this is A + B + C. Notice that B and C are complemented because this is the only way

to get a logical sum of O for the given input conditions:
Y=A+B+C=0+1+1=0+0+0=0



P

c B ;
ombinational Logic Circuits ;-———-’-"‘"1‘91

gimilarly. the third output 0 occurs f e
5 A+ B+C: orA=1,B =1, and C = 0; therefore, its fundamental sum
Y=A+B+C=1+140=04+0+0=0

Notice that ecach
the variable is
f-sums equation,

— 2 1
3":; :::,Om psl:li:cl:[i dl'ur\l;l;mcml.:l sums needed to implement the truth table
‘ en the corresponding i i i .
e R ¢ corresponding input variable is a Ii
lemen the corresponding input variable is 0. To get the product-0
have to do is AND the fundamental sums: o : ’

Table
variable
unCL‘)mp
all you

Y=(A+B+C)YA+B+C)A+B+C) (3.29)

This 18 the prnducl-uf—sunm cquation for Table 3.9

. eac oduct te as calle : Sy

i = M.:“l:; s dcgliL‘r,:l.:‘g:;J; ‘-ﬂ‘:'lt-ll minterin in SOP representation in POS cach sum term is called
4 S Uesige y M, as shown in Table 3.9. Equation 3.24 in terms of maxterm can

rml.\irrm
be rcprcscnlcd as
}’ = F“A. H. C) = nﬁf“)' 3' (,,

\ where T symbolizes product, i.c. AND operation.
\  Logic Circuit
After you have 2 product-of-sums cquation, you can get the logic circuit by drawing an OR-AND
utput of

work, or if you prefer, a NOR-NOR network. In Eq. (3.24) cach sum represents the ©

ne
is the output of a 3-inpul AND gate.

q 3-inpul OR gate. Furthermore, the logical product ¥
Therefore, you €an draw the logic circuit as shown in Fig. 3.27.

A 3-input OR gate ‘s not available as a TTL chip. So, the circuit of Fig. 3.27 is not practical.
an’s first theorem, however. you can replace the OR-AND circuit of Fig. 327 by the

A T

with De Mors
NOR-NOR circuit of Fig. 3.28.

i Z8BCE
| | | 1 7427
! 42‘-\312

N

= > EEE
| 3, Moy
ER ~._6 2\ 12
= > )% [ s] NE
. )2, '
= >— ‘ -

Fig. 3.27 Product-of-sums circuit.

[p1l=>1FS

~ ol

Conversion between SOP and POS
n:pre\'enmlinn is obt
In SOP. each one at outpul

We have seen that SOP ained by considering ones in a truth table while POS
gives one AND term which is finally ORed.

comes considering Zeros.



102 - Digital Principles and Applications

In POS, cach zero gives one OR term
cm'nplcmcmury locations in a truth table a
(1) identifying complementary locations

which is finally ANDed. Thus SOP apg PO%
nd one representation can be obtained from th oR
¢ 0

(1i) changing minterm to maxterm or reverse, and finally ’

(iii) changing summation by product or reverse

Thus Table 3.9 can be represented as

| Y = KA, B. C) = NAno., 3, 6) = Tmn(l, 2, 4, 5--7)
Similarly Table 3.4 can be represented as

Y= FA, B C) = L3, s, 6. 7) = T1M(0, 1, 2, 3)
EXAMPLE 3.9

Suppose a ¢
m“” . ) lm!h fable has o low output for the first three input conditions: 000, 001, and 010, |f I
puts are high, what is the product-of-sums circuit? Bt

Solution

The product-of-sums cquation is

her

Ym(A+B+CHA + B+ CNA+ B + O

The circuit of Fig. 3.28 will work if we reconnect the input lines as follows:
A pins 1, 3, and 9
B :opins 2 and 4
C:pins 13 and 11

B: pin 10
C: pin 5

SELE=TEST:

13. A product-of-sums expression leads to what kind of logic circuit?
14. Explain how to convert the complementary NAND-NAND circuit into s
dual NOR-NOR circuit.

3.8 PRODUCT-OF-SUMS SIMPLIFICATION

After you write a product-of-sums equation, you can simplify it with Boolean algebra. Altematively,
. Karnaugh map. There are several ways of using the
Kamaugh map. One can use a similar technique as followed in SOP representation but b_y foming
largest group of zeros and then replacing cach group by a sum term. The variable going in the
formation of sum term is inverted if it remains constant with a value I in the group and It is mzrt
inverted if that value is 0. Finally, all the sum terms are ANDed to get simplest ITOS form. fﬁe
illustrate this in Examples 3.11 and 3.12. In this section we also present an interesting alternative

to above technique.

you may prefer simplification based on the




s : o
%U:i s ' f CME’E’ Logic Circuits 103
b }
r.!]\, ; _of_products Circuit ,\
Vs ssign starts with a1t ahle 1 1
| qupre g dL;'r'IS::“: usual wuyd|1|mvl|]l llih]t 1'5': Table 3.10. The first thing to do is to draw the |
} .amaugh map - ' Bet Fig. 3.29a. The encircled groups allow us to write a sum- |
{ Ll pmjucui cquation: |
l- . e |
\J ; Y= A [ A & AC
‘ ” 3.29b shows the corresponding NAND-NAND circuit |
|  Figu™ -
? Table 3.10
if 4 A c D Y
] o 0 0 =T
{ 0 1
hE 0 0 o 1 :
1 ' 0 0 1 0 1
v 3 0 0 1 i 1
! 0 1 0 0 0
| 0o 1 0 1 0
| 0 1 1 0 0
, 1 0 0 1 0
; 1 ! 0 0 1
{ 1 1 0 1 1
| 1 1 1 0 1
| 1 1 1 1 1

complementary Circuit

T gel 2 produet-of-SuRS circuit, begin by complementing each 0 and | on the Kamaugh map of

Fia. 3.29a. This results in the complemented map shown in Fig. 3.29. The encircled Is allow us
g 3.4

1o write the following sum-of-products equation:

Y =AB+ABC
Why is this ¥ instead of }? Because complementing the Kamaugh map is the same as complementing
the output of the truth table, which means the sum-of-products equation for Fig. 3.29¢ 18 168 ¥

instead of Y. B
Figure 3.29d shows the corresponding NAND-NAND circuit for Y. This circuit does not produce

the desired output; it produces the complement of the desired output.

Finding the NOR-NOR Circuit

What we want to do next is to get the product-of-sums solution. the NOR-NOR circuit that produces
the origina! truth table of Table 3.10. De Morgan's first theorem tells us NAND gates can be repl.accd
by bubbled OR gates; therefore, we can replace Fig. 3.29d by Fig. 3.30a. A bus with each vanable




104 Digital Principles and Applications

<hH o cp cb A —

wliD

anrl o 0o o o i e
”_._.....

AB| 1 Ty gl

Y
Y

(a) (b)
Ch ¢p cp cD

e A
ABl o 0o o o0 f,} }-‘
n| D P
A — !
AB[ 0 0 o0 o0 B-—-——D——J
AB|C_D o o §
(d)

(¢)
Fig. 3.29 Deriving the sum-of-products circuit.

and its complement is usually available in a digital system. So, instead of connecting A ang B
a bubbled OR gate, as shown in Fig. 3.30a, we can conncct A and B to an OR gate, as shown ;
Fig. 3.30b. In a similar way. instead of connecting A, B. and C to a bubbled OR gate, we ha\:
connected A. B. and C to an OR gate. In short, Fig. 3.30b is equivalent to Fig. 3.30a

The next step toward a NOR-NOR circuit is to convert Fig. 3.30b into Fig. 3.30¢, which is done
by sliding the bubbles to the left from the output gate to the input gates. This changes the input OR
gates to NOR gates. The final step is to use a NOR gate on the output to produce Y instead of j_

as shown in the NOR-NOR circuit of Fig. 3.30d.
— D7

(b)

W A
|

ko

G

(D11--11EN

(2)

Wl

v

\
ik
f_
&/

ol

1d)

Fig. 3.30 Deriving the product-of-sums circuit.



"”

)

Combinational Logic Circuits

105
pri now'n()::; z:uc:::ill-(n::: cNt(()]Rg‘llx(‘;]:;“ugh Every step in changing a complementary NAND-
sircul e g circuit. Instes ;
crirt)ﬂ‘:l in the following. Mtead. you can apply the duality theorem as
des
oua"W

- carlier section 1.nlr(.uluc'c(.| lhf: duality l.hcnrcm of Boolean algebra. Now we are rcady to apply
(his theorem to logic CE_’):;“'-"‘:' G"':" a logic circuit, we can find its dual circuit as follows: Change
each AND gate to an £ gate, change cach OR gate to an AND gate, and complement all input-

sutput aignals. An cquivalent statement of duality iy this: Change cach NAND gate to a NOR gate,
cach NOR gate to a NAND gate, and complement all input-output signals.

Compare the NOR-NOR c1rcui|_n|- Fig. 3.30d with the NAND-NAND circuit of Fig. 3.29d. NOR
qtes have rcpluu.*cd INAND gates. l-l_mhcrmorc. all input and output signals have been cnmplcmcnlcd.
This is an application “r' the d“"l"lf thcorem. From now on, you can change a complementary
N,\ND-NAND circuit (Fig. 3.29d) into its dual NOR-NOR circuit (Fig. 3.30d) by changing all
NAND gates 10 NOR gates and complementing all signals.
points to Remember

Here is @ summary of the key ideas in the preceding discussion:

|. Convert the truth table into a Karnaugh map. After grouping the 1s, write the sum-of-products
equation and draw the NAND-NAND circuit. This is the sum-of-products solution for Y.

5. Complement the Karpaugh map. Group the 1s, write the sum-of-products equation, and draw
the NAND-NAND circuit for Y. This is the complementary NAND-NAND circuit.
3.

Convert the complementary NAND-NAND circuit to a dual NOR-NOR circuit by changing all
NAND gates to NOR gates and complementing all signals. What remains is the product-of-sums
solution for Y.

4. Compare the N:}ND—NAND circuit (Step 1) with the NOR-NOR circuit (Step 3). You can use
whichever circuit you prefer, usually the one with fewer gates.

EXAMPLE 3.10

Show the sum-of-products and product-of-sums circuits for the Kamaugh map of Fig. 3.31a.

Solution
The Boolean equation for Fig. 3.31a on the next page is

Y=A+ BCD
Ficure 3.31b is the sum-of-products circuit.
After complementing and simplifying the Karmmaugh map. we get Fig. 3.31c. The Boolean equation for
this is
Y=AB+AC +AD
Figure 3.31d is the sum-of-products circuit for the Y. As shown earlier, we can convert the dual circuit
into a NOR-NOR equivalent circuit to get Fig. 3.3le.

The two design choices are Fig. 3.31b and 3.3le. Figure 331b is simpler.




