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2
e 2
- ..(13)

This may be expressed as

H=4H 4 5 _ nl _
“—-27n-V2+e¢+_l_e_hA.v 82 2
mc + chzA ..(14)

where HO is unperturbed hamiltonian given b
y
2
Hom N 2 2
2m Vit ep=- ;_m v ...(15)

V being potential ene
r ‘ . o
&Y and /1’ is perturbation or interaction term given by

4 z
- -(16)

”’=”~..=HA-V+ e A

mc 2me?

For weak field terms of highe . 2
r ; 2 2
the interaction part of the Hamfltonigjjicsr InA ie. e” A"/2mc” may be neglected. Therefore for weak field
H = Hp =20 ) g._< 4 inv
me LR

.-(17)

H = Hipg = = m-—e—C A-p

i I;‘ (h'e cas;_: of a number of such particles, the Hamiltonian for the system will be the sum of such
amiltonians for individual particles. In the case of electron e may be replaced by —e (if € is to be

ie.

maintained as positive quantity).
9.5. APPLICATION OF TIME DEPENDENT PERTURBATION THEORY TO SEMI CLASSICAL

THEORY OF RADIATION.
The subject of iinteraction of electromagnetic wave on an atom is of great importance. The theory will

be semi-classical due to the fact that we shall treat the motion of the atoms to be quantised and the

C waves

electromagnetic field to be classical represented by continuous potentials A and y.
From the knowledge of classical electrodynamics it is known that for transverse electromagneti

the vector potential A satisfies the equations
JA
0

t

sk 1 )

e
I

VA -
c
div A=V.A=0
-monochromatic solutions applicable to physical situations of equations (1),
| Ag | and propagation vector k can

and
A typical plane wave
representing a real potential with the real polarization vector Re Ag =
be written as )
Jllear=01) o g5 ~Flar=ix) .(22)
=iyl & _.(2b)

A (l‘. l) =Ao
2 1Ag! cos (k-1 — @ + @); Ao
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tion vector k ang 2by; . ‘
i Eq fied if ke, k being magnitude of propagation ( b) L s!'itd i
{ Uation (2a) js satjs ted il 0 = Ac, ) |
cOnstant complex vector Ag is o —— 1 A (cquation (1) ¢ = 0) is
The electric ficld associated with vector patentia w + a).
|_a__/_\____2_mmotsin (k-r - N ¢
E=- = O c unit area per sccond is given by well | !
The intensity of radiation i.e. flow of encrgy per . Now,
Poynt.ing's vector
I=-=(E x B) (¢G5 System, ~(4)
4n : B)isay
in free space (E X CClor of Apn:
In free SPace |El = |Bland E is normal to B. Thus in gn“"de
i El” angd direction k ;...

2
1= 39 )42 sin? (ker - av + a)
n 2

Mean Poynting vector

2
T=2 5,/
2nc

i
. s " . 2 -
[Since time averaged magnitude of sjp (k-r—wr+a)is ]

m
ABSORPTION

n

EMISSION

En-E,=ho En—En=-No

Fig. 9.4,
From the precedi

ng section, the f
clccrromagnctic

Irst order correction to Hamiltonian for a chargcd particle inlt-'rac[ion
with field is gjven by

. e = del ,
H;;.:-‘--;;(A'P)—mc“\ ¥

= el [Aoei(k'r- W)+Ao"' e tker - m.r)] .
me

uation (12) of section 81, for af
i a0y =

Assuming nth state as initiqy State, eq

nal state m becomes

indmn € omn! where @, = -—'i-ﬁ..__:!_]
=H', ei((om—m):+H,.me:(mm+m): ()
thre H’m = ﬁzﬁ_ I vﬂ?‘ el"(k'r) (Ao -V) WHO dT
. ; «{K)
v h O - . 0
Hmn'_‘imf?f'ym g ”(Ao*-V) Va dt
If harmon;c perturba

tion of frequency @ js switched on at ; = 0, then ©quation (7) on integration wj
Tespect to s pives

th

—

. e ' D
\ = Ry
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(1 = ! : . i = [} :
am (1) = Tﬁ[jo Hpp o @m=0)t 0 Jo H G o) ! dr]
= ’_{lm" l - cl(mm - m)' !r‘ l - Ci ((ﬂm + m)' -"(93)
N (@ — @) T TR (W + ©)
B ' B
Using @mn = — o~ Wegel

Wy e {1 o Em = En =) /m | = ¢ (En ~ En + Do) /B
am () = Homn 4 H"

e ——-] ...(9b)
E,-E, -h 0 E,—-E.+N ©
Out of the two terms in (9) only one term at a time is to be considered. If Em = E,-hw=00r
En— En = h @ the first term will be very large compared with the second; but if

E,-E,+hw=0 or E, - E,=—-1T0®
the second term will be large compared to first, while if ncither of these conditlons is satisfied, the
pmh:\hilily of transition is vanishingly small This means that the transitions are probable only if
Em-E,=%thw =il
which is Bohr's frequency condition which appears here not as a postulate butas a deduction.

Of these two probabilitics one corresponds to an absorption of radiation from the field and other to an
emission induced by the field. It is quitc remarkable that we obtain quantisation of energy even though we
have not assumed the quantisation of electromagnetic field initially. Equation (10) assumes the
convervation of energy between the particle and the field.

For absorption : (E,, > E,) the probability is maximum for Wy, = @ OF En—-E,=ToO and first
term of (9) predominates while the second term is negligible. Thus for absorption
(Wpy — W) I

(), _ .(11)
am (I)_ ‘H‘mn h(mm - (.D)
The probability of finding the system in m-state at the end of the interval 1 is
o
4 sin” - (Wy, — O) !
1 "
| a8? @ %= | [ ~ -(12)

ﬁ2 (Omn — m)2

Thus for absorption the probability is proportional to | H “ma 12,

5 . i 1 5

So far we have considered only a single frequency . Since the probability | a,s,) (3] |2 is very small
except when ©,, = ®; the random motion of emitting and absorboing atoms produce a Doppler
broadening of spectral lines and the radiation present in the initial state has a continnum of frequencies. If

the intensity in the smaller angular frequency range A® is I (0) Aw, then the magnitude of Poynting vector
is

2
- _ W 2 2 _ 2rc
I () Aw = e | Ao|” or | Aol = —-mz I () Aw ...(13)

Here Ag is the vector potential amplitude and characterises the frequency range.

The transition probability for absorption is

t
8re’

2 2
m cQ

Q)]

sin® {(@p — ©) L1)
1% 2

I () Aw

j v &N grady v, dv

OTRED> .(14)

(mmn - m)Z

————
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where grad, is the comp;Jncnl of the gradient operator along the polarisation vector A,
being no phase relati
Probability from v

made infinitesimal

- On accoy,, of
ons between the radiation components of different frequencies, the conlrlbuti(,ns (

" =g frequcncy range Aw in €quation (1

anous frequency ranges are additive. Each ] ; ‘ 4) ¢
and then (l]hc sufnmation can be replaced by an integrauon. As the time factoy has 5 s:. b
maximum at @ = Wmp the other factors involving can be taken outside the integral and the limj M

tS On m ¢
- s a
be extended 10 + oo, By doing so the transition probability per unit time for an upward Fansigi,
(absorption) becomes. 5 .
= sin® (o -m)l,]
1 £ 0, ik. 0 j et
Tlan 01 = 2 I V'€ gradgyn dv| x | r— do

2
'(mmn = (x))
22

ik 0 2
_;'Li"’(“’mn) | J. Yn® € " grady y, dt |
m-cw,,,

]

(1)

..
+= sin l((n,,,,,—m)%!j
since

“dw = 2,
(@mn — @)/2)2

. . u)
Wwhere the magnitude of k is now —=
c

For emission i.e, for the downward transition there is a similar result, the onl
¢ Rk is replaced by ¢ ‘KT
(Em* = E,-hw)is given by

y difference being (hy
i.e. the transition probability per unit time of a downward iy ansition

22 .
e

Ll W, [2_ 4=
Pl = =3

. ,(mnm') ‘_[ Vm* f-lk‘rg’adA wnodt
m

2 -.(16)
nm

where the magnitude of k is 'u—)::i .

Interpretation in terms of Absorption and Emission.

Equation (15) and (16) represent the transition

probabilities of the particle per
stationary states under the infly

unit time between
ence of a classical radiation fiel

d. Let us now interpret these expressions in

gyEm-En

S(En-E) =t Wmnae 50 that we may consider that

tion of the ope quantum from the radiation

If we rewrite equation (16) in terms of the Feverse transition to that e
(15) descrnibes the transition from an iniual lower state n to a final
to describe the transition from an initial upper state m 1o a final 1o
n. Then equation (16) takes the form

ich appears in (15). Equation
upper state m, €quation (16) can be made
Wer state n if n s replaced by m and m’ by

N

)
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22
4n’e TS 17)
73 [ (0y) J(‘Va?'e “r)VA%g‘h ¢
m-cw,,,
ntegral in (15)- The

It can be scen that the integral in (17) is just negative of the complex conjugate of i e
squares of magmludcs.of both integrals in (15) and (17) arc cun.',nl _ This implies that the transifion
robabilities of absorption and induced emission between any pair of states are the same.

Electric-dipole Approximation.
k- r) term by term

The integral in equation (15) is usually cvaluated by expanding the exponential (¢
ie.
. . 2
el k'r - l + "kr + %f)_ + ... ...(IB)
The magnitudes of the successive terms
2
pofpadBE o 1. 202 _ 1 [ARFTY, -(19)
2 A 21 A ) )
i.e. the magnitude of successive terms decrease by factors of the order of magnitude 7/A. Thc integral is
now (o be taken over the space occupied by the atom and the integrand is virtually zero at distances from

. . 1 e e . ) -5
the origin which are greater than 10 . cm. For visible and ultraviolet transitions A = 10 = cm. Therefore ‘

r/\ is of the order of 10~" and so, in this case, we approximate & ¥T = |. We now show that the

— by unity is equivalant to replacing the atom by an electric dipole.

approximation of replacing e
it as a matrix element of the momentum of the

The resulting integral can be simplified by expressing
particle r.e.

0 0 0, (9 0
.[Wm* grady Yn dt:IWm (*a:]" Yy, dt

i 0 0
=EIWMPAWnd1

i
= E <PA>mn .-.(20)
where py4 is the component of the momentum p along the direction of polarisation of the incident radiation.
d m
But <p>mﬂ=mz<r>m=ﬁ[<r>,Ho]

=% [<r>, Holmn

!
2 A [yt v Howa' ¢t~ [ wa* Hor vy dr}

= 2 (En = En) (Imn = = 75 Orsn (Omn (21)
I Wrgl' grady ‘Vno dt = - ':':_ Omn <TAZmn
_om 0 0
=T om [ Va v & (22)

where r, is the component of r along the direction of polarisation.

| [ vm® grads v de| = @m [ wn® ra v -(23)
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rption becomes

sin - rime for abso

Then equation (15) for transition probability per Uzm' me
4an

po a Ly @prte =57 (@) |

mna — he le moment er of the particle thus indjcy,;

This involves only the matrix clements of the electric dipole M ing

] bo u ent O

that replacement of ¢’ r by unity is simply the acplgﬁ‘é’:d ernisdiDn

transition probabilities per unit time of absorptian an in )

; ~(25)

2
4an = |
Ppn = —3 I (©Omn) | e <FA2mn
hoc
ed, we calculate the x. Y.

tion probability per unit tim

2
e <TAZmn [~ (2

f atom by an clcctrfc dipole. Thys the
can now w¢ wrilten as

z component of dipole momen; i

If the incident radiation is plane polaris e will be

average over all orientations, so that the transi .

a(l) (f)|2 o ,f_"_‘__. ! (Wpn) le <FA2mn
m

3nc o . -

to define a transition probability per unit time pg,

(En > E,) denoted by Einstejq

Li ™ -(26)

Plyp =

Einstein Transition Probabilities : It is convenicnl

unit of radiation intensity for the transition Wn = ¥ absorption
B-coefficient
) 2 2 5
B _ la, (@I . 4n [ €(F)mn I .(27)

By the principle of detailed balance [it may be noted that .

{1 ®n 1> = | a7}

the probabilities of induced absorption (B — m) and induced emission (Bm — ) are equal for any pair of
states i.e.

B,oosm = Bmnon --(28)

The above discussion does not account for spontancous emission. It is known that a system in an

excited state can emit radiation even in the absence of any external field. Einstein A-coefficient (4, _, )

simply by considering the equilibrium of two states of different energies. If N, and N, are the number of

systems in the states with energy E,, and E, respectively, then according to Boltzmann's distribution law for

equilibrium at absolute temperature 7 we have
—E, /kT
N, = o / -Thw, kT
i E = (Em S L e e/ ...(29)

N, ~ EJAT

where k is Boltzmann's consrani.
The number of systems emitting radiation (transition m — n) per unit time 1s

Nm ((Ansn) + B,,,_.,.,l((.l.),m,)] ...(30)
and the number of systems making reverse transitions (absorption) per unit time is
NpnBn 5 m 1 (Wmn) ..(31)
At equilibrium these two numbers must be equal
ie. Nn {(Amon) + An s n 1(Omp)) = Ny By 5 i 1 ()
or & . Byl (mm.n) (32)
- Nn Amon + Bn sl (0n,)

Also since B, , m = By — 5 and using (29), equation (32) may be expressed as
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-
c u’ﬂh’l/kr - B'""l = N /(wll'lﬂ)
This gives e
! (mmn) = "———-—--——----Am i //B,,, =1 e
N iy /KT
But by Planck’s distribution law ‘ Co!
3
Nw,,, I (34

I(OJ,",,) = :
nicd M ona/kT_

Comparing (33) and (34), we note that
Einstein A-coefficient for spontancous ecmission is

ho,)
Am—an = zm; B =i
n ¢
nw,)  an’
n 2
= —Eﬂl’l_z— le (F)mn P2 using (27)
¢ 3h«c
4u)]
Amon = "*"’E; ’ e (Dmn '2 ...(35)

Selection Rules :
It is clear from equation (25) that dipole transitions between states f, i arc possible only if
e <r>g 0
e angular momenta, this condition then

If this is the case, the states under consideration have definit
ntumn. From the property of spherical

gives the selection rule governing the change of angular mome
harmonics, it follows that
[ (Yym)* Yim de=0 onlyifly—t==1
if it is assumed that r is a vector operator i.e. a spherical tensor
he angular momentumn eigen states are proportional to
r Eckart theorem. Hence it vanishes if

0 vanish because r is of odd parity.

This result can be obtained more generally
of rank one. Hence its matrix element between t
Clebsch-Gordan coeficient </ m;; | {f me> by Wigne
1ALl = (; =1If! exceeds one. Further the matrix elements for Al =

Thus the selection rule for/ remains Al = £ 1. From the properties of Clebsch Gorden coefficient it is
also clear that Am =myg — m; is limited to Am = = 1,0. The polarisation vector A determines which of
these cases can occur. For example o =z As z = rcos 8. which is

f A is along z-axis, then (ra)a
independent of ¢ this corresponds to m =0 in Clebsch Gorden coefficients and hence the selection rule for
mis Am = 0.

* I,

Thus the selection rules are &m = 0, ,Al. =2

ch occur under dipole selection

Forbidden transitions : The transitions which are

may occur, but with greatly reduced probability. These aris
. 2 . r

JET = | +ik.r+ -Q%—F)— +..=%L —(%"—rL(powersscries)

rules are called allowed transitions.
forbidden by selection rules of dipole approximation

The transitions whi
e from the higher order terms in the expansion

or as a series of spherical harmonics

]
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(cosB) + .

; P
Jker =jo (kr) + 3i J,(kr) P (cos8) — Sj2 (kr) P2

=L @+1)d Jitkr) Py (cos8) ies is of the order (k r)" ™! The

i ; f the sene
Wwhere 6 is the angle between k and r. In either case lh¢: nth term 0‘< 1. Thus if the dipole matrix clemep,
Sl ; ment is reduced by a factor thap

i ) : : n-
dominent factor in nth term js proportional to (k r) fho oo
vanishes but the next term of cach series does nol, the transition ension of the particle’s wave function
has the order of magnitude ka; where a is the order of the linear dim . maller by (.(’a)2 = 107° Such

s . -3 : ability 1s s . i
The typical value of ia iIs 10 7 and the correponding pr°b1b'hcyf()rbiddcn ransilions are very mycp,

transitions are called the forbidden transitions. Even fpf { =1 of the serics can be interpreted in termg of
weaker than those from allowed transitions. The successive terms ive higher powers o ki,

g : i . s$
electric dipole, electric quadrupole clc. transitions and lnvn!vc succrz’ddcn in the sensc that the exact (firsy
Finally we observe that the certain transitions are strictly forbi

‘ is is the case if both i and fare s-stateg.
order) transition matrix element vanishes; / (wy;) <ry > — O This s the kr but if
. but if the

!
: ansion of ¢
If the dipole transition is forbidden we must take further terms 1;3:'}:;‘ ‘i;gory and should not neglec,
transition is strictly forbidden we must take higher orders of the pertur
2,2 g : “mission of the two photons.
the term g°A°/2mc” : this then leads to the simultaneous emissic
Questions and Problc",ls the Femi-golden rule for the transition raz,
first order time dependent perturbation theory and derive the (Meerut 1997, 96, 90, 82, 81)
s constant in tima 9xcept; that
(Rohilkhand 8s5; Agra 81)

1. Discuss the
from a given initial state to a final state of continuum., ‘ ‘
hich i

2. Give the time dependent parturbation theory for the case of a perturbation w

itis switchedonatt = 0 and swiched off at time . ) i
perturbation theory for a constant perturbation acting for a short interval of time. Ralata the

3. Give time-dependent - ol
transition probability per unit time with the differential cross-section for scatte g.

4. Prove that the transition probability per unit time is
’ 2
25 o) | |

; . jon term

i i nd Him is the matrix element of the perturbation ;
where p (k) denotes the density of final states a km (Meerut 78 Ahirs )
S. Show that the transition probability per unit time for a system to make a transition from an initial state to 2 final in
the continuum is given by
2rn " 2
m,,n=-h—p(k)[<lelm>| (Meermaa)
6. Discuss briefly the time dependent perturbation theory and derive and expression for the transition probabmty o
a group of states per unit time. ‘ (Agra 72)
7. Obtain expression for transtion probability per unit time, in the first order when constant perturbation acts on the
(Rohilkhangd 1932)

system. Discuss limitations of any of the formula derived.
8. The amplitude of the & th state under the first order time dependent perturbation theory is given by

+ = = ’
at" (n = 21 n f <k 1H (1)1 m> ®kml” 4. 110 Sytem is subjected to a harmonic perturbation cf the
type H* (0 = 2H" sin wtwhich is swichedonatt = 0Qandoffat ¢ = b. Show that the probability per unit time

for an upward transition is given by
2 2
== | <kIH | m> K
n | 1" o (Jivaji 1988)

9. (a) Show that the first order effect of a time-dependent perturbation, varying siunsoidaﬂy in time,
emission or absorption of energy
(b) Give an outline of the derivation of the “dipole selection rute” Al=%1,Am=90 =+ 1. What are strictly
forbidden transitions. S
(Rohilkhand 1998)

10. Give the time dependent perturbation for a harmonic Perturbation. Discuss the electric dipole approximation
(Rohilkhand 78; Raj 85)
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