UNIT -1
) ELECTROSTATICS

1. Introduction:

1.1 Electrostatics - meanings
The branch of Physics tl at deals with static electricity, The Physics of

electrostatic Phenomena. The branch of Physics which deals with static electric

charges or charges at rest.

Static Electricity: The electricity produced b); friction is called frictional electricity. If
the charges in a body do not mave, then, the frictional electricity is also known as

Static Electricity.

Many problems in mechanics are greatly simplified by means of energy
considerations. Hence, to know the mechanical behavior of an electrical system, the

energy methods are to be studied. In general,

the energy of a system of charges, just like that of any other mechanical
system, may be divided into its potential and kinetic contributions. Under Static
conditions, the entire energy of the charge system exists as potential energy and, [t is

concerned particularly with the potential energy that arises from electrical

interaction of the charges, the so-called "electrostatic energy".

1.2 Coulomb’s Law:
All of electrostatics stems from the quantitative statement of Coulomb’s law

concarm\b the force acting between charged bodies at rest with respect to each
other. Coulomb, in an impressive series of experiments, showed experimentally that

the force between two small charged bodies separated in air a distance large

compared to their dimensions Varies directly as the magnitude of each charge,
Varies inversely as the square of the distance between them, is directed along the

line joining the charges, and is attractive if the bodies are oppositely charged and

repulsive if the bodies have the same type of charge.

The total force produced on one small charged body by a number of the other
small charged bodies placed around it is the vector sum of the individual two-body
forces of Coulomb Strictly speaking, coulomb’s conclusions apply to charges in
vacuum or in media of negligible susceptibility. Let Let q1 and g2 be two point charge

placed in air at a distance r. According to coulomb’s law
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1.3. Electric field O
The electric field can be defined as the force per unit charge acting at a given
point. It's a vector function, and it js denoted by E. The ratio and the direction of the )
force will become constant as the amount of test charge is made smaller and smaller.
Electric field can be written as, )
2 )
==X )
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Where is the force is the electric field,.q is the charge. )
1.4 Electric field due to point charge: i)
Let g1 be the point charge placed at x1. A test charge q is placed at x shown in 2
figure : )
A A )
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According to coulomb’s law ‘
o e : 8
The electric field at a point x is, by the definition the force per unit test charge, _
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The constant of proportionality k depends i |
static coulomb and the electrie field is
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Where, <0 = 3.854 =10 Farad per meter (I'/m) is called the permittivity
of free pace and the S.J. unit of charge is the coulomb and electric field is meastirec
in volt per meter. In S.1. system equation (2) can be written as,
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The electric field at x due to a system of point charge qi placed at xi, i=1, 2...n, then,
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Equation (4)

If the charges are so small and equation (5) can be described by charge density

A ‘ i y ) ;
plx ) If dq is the charge in small volume dx dy dz at the point X the dg=

px) dx dy dz and the sum is replaced by an integral.
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dax dy dz = d3x in equation (6) we get,
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The law relates the flux through any closed surface and the EEEC &
enclosed with in the surface.

Statement:

The law states that the total flux of the electric field E over any closed
: o

surface is equal to o times the net charge enclosed by the surface. Charge outside
t e surface will not contribute to flux. |

I roof:

Consider a point charge q and a closed surface S as shown in figure. Let r be

the distance from the charge to a point on the surface n be the outwardly directed
unit normal to the surface at the point, da be

an element of surfacg area.
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If the electric field . E at a point on the surface due to char
with the unit normal, then

ge q makes an angle &

> da
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Substituting CO‘SNQ“a:a a _63]9 Where d<2

~- Whe = 1s the element of solid angle
subtended by da at the position of the charge | o
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Therefore, 4ze
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Therefore equation (3) becomes,
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The result is Gauss’s law for single point charge. For a discrete set of charges,
e s T e — e
ation (4) becomes, -
equation (4) becomes ‘/ it |
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Where the sum is over only those charges inside the surface S. FFor continuous

e
| charge density ’ Gauss's law become,
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Field of a C’lpxj_g_e_d_g_(‘mducting-Sphefe
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We now know that any excess charge on a isolated solid conducting sphere 1s

>

distributed uniformly on the outer surface. We also know that the field of the sphert
is radial everywhere, because it similar to a point charge in that there isn't any
reason why the field would deviate in any particular way from the radial direction.
Again, the magnitude of the field is uniform over a spherical surface of radius r, as

long as its concentric with the conducting sphere. This is shown on the illustration at
(click on the illustration for a VRML model of the sphere).

right

If r > R, we know that outside the sphere we can treat the sphere as if it were a
point charge. Another way we can look at it is that the Gaussian surface encloses
only tl}at charge Q. And since the field lines are all perpendicular to the surface and

uniform all over, we get:

o
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Ifr <R, the Gaussian surface would be inside the conductor. Thus, the field would
be zero since all charge is on the outside surface of the conductor.

g
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. Field of a Line Charge (Charged Cylindrical Conductor)

Netice that earlier with Coulomb’s Law we derived the field of a@@
charge, which we now will call silhply a line charge, but now we will do it more
easily with Gauss's Law. Now our wire is very long and we aren't near the ends of it,
SO we can say the field lines outside the wire are radial and lie in planes
perpendicular to the wire (Field lines will not behave that way when you get close to
the ends; they cease to be parallel to each other and that gets all messy). We also
know that the field has the same magnitude at the same radial distance from the

wire (Is this starting to sound familiar? It is because before we can use Gauss's Law

we need to establish that the field is both constant and perpendicular to the
Gaussian surface that

G

we use.).

Knowing all that, we need to select a surface
that we can use to find the field and naturally we
would choose a cylinder of an radius r and length
of |, with the ends of the cylinder perpendicular to
the wire (parallel to the field lines). You can see
the illustration at right to visualize this setup

(click on the illustration for a VRML model of the
wire).

Gaussian surface

Now, O is the charge per unit length of the wire. So that means that the
charge in the Gaussian surface is O times the length. Since E is at right angles to the
wire, the component of E normal to the end faces is zero. That means that the end
faces don't contribute to the integral in Gauss's law. On the other hand, the side of
the cylinder is perpendicular to the field lines, so they will contribute to the ntegral,
Since the surface area of the Gaussian surface is 201>, we get this for the solution-
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Now if you notice that the difference between a charged cylindrical conductor and a
line charge is thickness, you will also realize that the relationship between the
cylinder and the line is the same as the sphere and the point charge. Since excess
charge on a conductor collects on the surface, there is no field inside the cylinder.
Outsid > the cylinder you notice that you can treat the cylinder like a line, and you

/\ will arrive at the same answer.
? ]

yField of an Infinite Plane Sheet of Charge

|
~

Like last time, the infinite sheet of charge has a charge per unit area of O.
However, this time we are going to use Gauss's Law. Create a cylinder whose ends
have an area A and whose walls are perpendicular to the sheet as shown in the
illustration to the right (click on the illustration for a VRML model of the sheet). By
symmetry, and the fact the sheet is infinite, the field E has the same magnitude on
both sides, is uniform, and is direcied normally away from the sheet. The component
of E crossing the walls of the cylinder, the curved part, is zero. What that also means

1S:
B d4= 284
A — -Ciq
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We used2EA because we need to take into account both sides of the sheet.

We see again that the magnitude of the field is independent of distance. That is
because the field lines everywhere' are straight, parallel, and uniformly spaced. Why
this is true is because the sheet is infinitely large. Actually this is just an idealization
of reality since nothing can really be infinitely large and that it can be applied to
finite sheets as long as we stay away from the edges (where the field lines aren’t
parallel or uniformly spaced). Field of an Infinite Plane Charged Conducting Platc .
If we give a flat metal plate a net charge, the charge distributes itself over the entire
outer surface. This is just like two infinite plane sheet of charge, one on each side of
the plate. The fields from the two sheets (named 1 and 2) will thus be superimposed
on one another in each of the two directions, as you can see in the illustration at
right. Thus, outside the plate, the electric field will be:
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But what about inside? Well, the field lines of the two sides of the plate canc
each other out. The result
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ant of the field lines is zero, which you realize is the sam
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any other conductor. Inside a conductor, there is no charge and thus no elect >
field. In that deriv
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ation we used a previous derivation in order to do this one.
you're a purist and w

as in

/ e
ant to do it the way Gauss would've wanted you to, with his: )
law directly, it is: )
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JSame diagram, same situation, different way. Inside the conductor, where the inside '
face lies, the field s zero; it is always zero inside a conductor. Outside the conductor, '}
it is perpendicular to the pl

ate, so the normal component of E is zero over the walls
and equal to E on the outside face.
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i: ,{ Field between Oppositely Charggg_‘lfq_ra_l_lg_l Conducting Plates ~y

The illustration to the right shows what the field lines of two plane parallel )

conducting plates are. The field between the plates is basically uniformly spaced but )

there is a [jttle fringing, at the edges. We are not concerned with the edges so we can e

assume it is uniform. These parallel plates are the basis of capacitors, which will be Q
discussed in a

later topic.

A

These two plates can be treated as two she
We can use Gauss's Law.

ets of char
Qutside the two sheets,
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In order to bring two like charges near each other work must be done. In

o ’;&' order to separate two opposite charges, work must be done. Remember that
'%\y 0" wheneverworkgetsdone,energychangesform.
’ ,\30\9/ Y As the monkey does work on the positive charge, he increases the energy of that
; charge. The closer he b ings it, the more electrical potential energy it has. When he
releases the charge, work gets done on the charge which changes its energy from
electrical potential energy to kinetic energy. Every time he brings the charge back,
he does work on the charge. If he brought the charge closer to the other object, it
would have more electrical potential energy. If he brought 2 or 3 charges instead of
one, then he would have had to do more work so he would have created more
electrical potential energy. Electrical potential energy could be measured in Joules
Just like any other form of energy.

Since the electrical potential energy can change depending on the amount of
charge you are moving, it is helpful to describe the electrical potential energy per
unit of charge. This is known as electrical potential

work - or - Aelectrical potential energy
unit of charge moved

electricalpotential =

g el

q rmoved

As a formula it is written like this: The energy per unit of charge is often called
voltage so it is symbolized with the capital letter V. Work or energy can be
measured in Joules and charge is measured in Coulombs so the electrical potential
can be measured in Joules per Coulomb which has been defined as a volt

14 = volt i

1.7. Electric field and equipotential plots

”

" We know that Coulomb's Law determines the force between two charges, and
that by applying the law of superposition and using some calculus we can determine
the force on a test charge from any collection of charges. From this we can abstract
the concept of an electric field - an electric field is a mapping of the force thata test
charge would feel due to the pre-existing configuration of charges. The equation
F=qE makes this relationship ciear, to get the force from the field we simplv need to

fultiply through by q, the value of the test charge. In Physics 4A, soon after we
learned about the concept of force, we also learned about the concept of work. One

of the differences between force and work is that force is a vector and work is a

scalar. Since one of the difficulties we experience in Physics 4B is the vector nature of

the electric field, it would be helpful to find an analog te work.



\p,,

. |
- QO "”“ ‘l““
N ract, we do the same (rick we did to detine the electric relc, yvnereas ele i
: Y i i iy % » X horps | ,(']' l”“
is force per unit charge, voltage ot electrical potential is defined as worlk |

in path.

charge. In Physics 4A we defined work as an integral of the force over a certa i
ith A6

If we were dealine with conservative forces, we discovered that the actual pi
et ; ¥ ! s (s lll"
not matter, and that only the endpoints were important, In Physics 4B we'll see i
A : ' . =) P S S 1
the electrical potential 15 the integral of the electric field over a certain pnl“I, ‘
g : 1 o 1“’
since the electric force is conservative, we can focus only on the endpoints of 1

pnt‘h, [his will make many calculations easier to compute.

[he first concept we'll want to tackle is the idea of an (,rquil‘)()l,('l‘\li:xl line.
Simply put, this is path where all of the voltages are equal. We've seen maps similar
to equipotential lines all of our lives, a temperature map 1s a good example. On the
map below, the low temperatures for the day have been plotted over the United
States. The people who made the map connected all of the weather stations that
reported the same temperature, hence the lines on the map represent paths of equal
temperature. We'll do the same for voltages and create a "weather map" for different

charge distributions.
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How does a map of the equipotentials help us understand the electric field
(and hence the forces related to the charge distributions)? For this we need to think
back to the definition of the electric potential. It is a measure of work per unit
charge. If we travel along an equipotential line, since there is no change in voltage,
no work is done on the test charge. Since the work done by an electric field on a
charged particle is the integral of the dot product of the field and the displacement,
this implies that the test charge moves at right angles to the electric field. Why?
Because if the charged particle is moving at a right angle with the electric field, the
dot product is zero, and hence tlie work is zero. Therefore equipotential lines must
be at right angles to electric fields. A map of the electric field can be generated if we
simply draw lines at 90 degrees from the equipotentials. (Note that since pressure
and temperature variations usually match fairly well, a wind map can be
approximated by drawing lines at right angles to the lines of equal temperature.)

Jo
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\Wleclric field in free space, conductor, dielectric
Slectric field in free space

S ——

- i

Field strength in free spaceis a term in telecomn
strength caused by a half wave dipole under ideal conditions. The actual field
strength in terrestrial environments is calculated by empirical formulas based on this
field strength
N be the effective power radiated from an isotropic antenna and p be the power
density at a distance d from this source

N
1 B S :
|
Power density is also defined in terms of electrical field strength;
Let E be the electrical field and R be the impedance of the free space
E?
i
The following relation is obtained by equating the two,
N e

R e

or by rearranging the terms

Electric field in conductors
A conductor is in electrostatic equilibrium when the charge distribution (the

>
way the charge is distributed over the conductor) is fixed. Basically, when
you charge a conductor the charge spreads itself out. At eq{xilibrium, the
charge and electric field follow these guidelines: :

» the excess charge lies only at the surface of the conductor

» the electric field is zero within the solid part of the conductor

~ the electric field at the surface of the conductor is pernendicular to the surface

> charge accumulates, and the field js strongest, on pointy parts of the

conductor

Let's see if we can explain these things. Consider a negatively-charged
conductor; in other words, a conductor with an excess of electrons. The excess
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electrons repel each other, so they want to get as far away from each other a8
possible. Te do this they move to the surface of the conductor, They also distribute
themselves so the electric field inside the conductor is zero. If the field wasn't zero
any electrons that are free to move would. There are plenty of free electrons inside
the conductor (they're the ones that are canceling out the positive charge from all the
protons) and they don't move, so the field must be zero,

A similar argument explains why the field at the surface of the conductor 15
perpendicular to the surface. If it wasn't, there would be a component of the field
along the surface. A charge experiencing that field would move along the surface in

response to that field, which is inconsistent with the conductor being in equilibrium

Why does charge pile up at the pointy ends of a conductor? Consider two
conductors, one in the shape of a circle and one in the shape of a line. Charges are
distributed uniformly along both conductors. With the circular shape, each charge
has no net force on it, because there is the same ~amount of charge on either side of

it and it is uniformly distributed. The circular conductor is in equilibrium, as far as
its charge distribution is concerned.

equally-spaced charges
————— experiencing balanced

2 / forces
©

o 00060090

equally-spaced charges
\Q experiencing unbalanced

iy L forces

With the line, on the other hand, a uniform distribution does not correspond to
equilibrium. If you look at the second charge from the left on the line, for example,
there is just one charge to its left and several on the right. This charge would
experience a force to the left, pushing it down towards the end. For charge
distributed along a line, the equilibrium distribution would look more like this:

06 6 6 000

uneaually—spaced charges
experiencing balanced

fAarroce

The charge accumulates at the pointy ends because that balances the forces on each
charge. :

-
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Those materials which have the ability to transfer the electric effect:s

conducting. Dielectrics exists basically in two types

BICCLLIC r1ela wielectrics ) >

1.PolarDielectrics

2. Non polar Dielectrics

Polar Dielectrics: Polar dielectrics are those in which the possibility
of center coinciding of the positive as well as negative charge is almost zero i.e. they
don’t coincide with each other. The reason behind this is their shape. They all are of
asymmetric shape. Some of the examples of the polar dielectrics is NH3, HCL, water

etc.

Non Polar diel

ectrics: In case of non polar dielectrics the centers of both positive
as well as negative charges coincide. Dipole moment of each molecule in non polar
system is zero. All those molecules which belong to this category are symmetric in

nature Examples of non polar dielectrics are: methane, benzene etc.

a)Polar molecules:
Q"_—_\

S —

—

‘Polar means having electrical poles (i.e. electrical polarity). The molecules in

which the arrangement or geometry of the atoms is such that one end of the
molecule has a positive electrical char

ge and the other side has a negative charge are
called as polar molecul

es. Examples of polar molecules are Water (H20) (Fig. 21aj},

Ammonia (NH3), Hydrochloric acid (HCI), Sulfur Dioxide (502), Hydrogen Sulfide
(H2S), Carbon Monoxide (CO) etc.

More negative chargcs

Oxygen atom

= 1 l 12 &
@ @ ——Flydrogen atoms

More positive charges
(a)

(b)
Fig. (a) Polar Molecule : H,O (b) Chemical Bonds in H,O

CIxyyen C arbon

—_— C ARSI, |

W5 witi T

Fig. (a) Nonpolar Molecule: CcO >
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A non-polar molecule is that in Which the electrons are distributed mth

_ : &
Symmetrically and thus does not have an excess /abundance of charges at

2
opposite sides. The charges all cancel out each other. e.g. CO2, H2N
,02,CH4,CCl4 ete.

1.9.‘I)§'0Im‘trics Polarization

Dielectrics are materials which have no free charges; all electrons are bound
"
'd

and associated with the nearest atoms. An exter

nal electric field causes a small
separation of the centers of the electron cloud and ¢t

he positive ion core so that each

ectric dipole. Dielectrics may be

infinitessimal element of volume behaves as an el

subdivided into two groups :

Non-Polarwhich behave as above Pol
permanent dipole moment which
become more or less oriented by

ar in which the molecules or atoms possess a
is ordinarily randomly oriented, but which

The induced dipole field opposes the applied field. In the diagram shown

opposite the volume element indicated could represent an atom, a molecule, or a
small region.

The type of polarization on a microscopic scale is determined by the material.

Most materials exhibit polarization only in the presence of an external field.

A few
however show permanent polarization:

=
SN

Ferroelectric crystals exhibit spontaneous permanent polarization,

i

Electrets become péﬁnanently polarized
strong electric field the ty
the foll owing categories:

if allowed to solidify in the presence of a
pe of polarization may be additionally subdivided into

v

Electronic displacement of the electronic cloud w.r.t the nucleus. Ionic separation
of +ve and -ve ions in ]

ne crystal. Orientation alignment of permanent dipoles
(molecules).

-

Space-charge free electrons are present, but are prevented from moving by barriers
such as grain boundaries - the electrons "pile up".
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1.10. Dielectric strength 4
The theoretical dielectric strength of a material is an intrinsic property of the

and is dependent on the configuration of the material or the elettrodes

bulk material
with which the field is applied. The "intrinsic dielectric strength” is measured using
pure materials under ideal laboratory conditions. At breakdown, the electric field
frees bound electrons. If the applied electric field is sufficiently high, free electrons
from background radiation may become accelerated to velocities that can liberate
additional electrons during collisions with neutral atoms or molecules in a process
called avalanche breakdown. Breakdown occurs quite abrupﬂy. (typically in
nanoseconds), resulting in the formation of an electrically conductive path and a
disruptive discharge through the material. For solid materials, a breakdown event

severely degrades, or even destroys, its insulating capability.
O ¢ 2

Factors atfocting apparent dielectric strength

> [t decreases slightly with increased samplé thickness. (see "defects" below)
> It decreases with increased operating temperature.

» It decreases with increased frequency.

for gases (e.g. nitrogen, sulfur hexafluoride) it normally decreases with increased

humidit_\'_

for air, dielectric strength increases slightly as humidity increases

M_gwn field strength

The field strength at which breakdown occurs depends on the respective geometries
of the dielectric (insulator) and the electrodes with which the electric field is applied,
as well as the rate of increase at which the electric field is applied. Because dielectric
materials usually contain minute defects, the practical dielectric strength will be a
fraction of the intrinsic dielectric strength of an ideal, defect-free, material. Dielectric
films tend to exhibit greater dielectric strength than thicker samples of the same
material. For instance, the dielectric strength of silicon dioxide films of a few
hundred nm to a few pm thick is approximately 0.5GV/m. However very thin layers
(below, say, 100 nm) become partially conductive because of electron tunneling.
Multiple layers of thin dielectric films are used where maximum practical dielectric
strength is required, such as high voltage capacitors and pulse transformers. Since
the dielectric strength of gases varies'depending on the shape and configuration of
the electrodes, it is usually measured as a traction of the dielectric strength of

Nitrogen gas.
L11. Blectric field in multiple dielectrics: -
£ M selve Laplace and Poisson’s equation involving dielectric materials we

need to derive the boundary conditions of the fields which obey at the dielectric
surfaces .To find the boundary condition upon the component of a normal to the
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between two different dielectrics as noted in figure.
Ko T ther has ¢
\ : : | 3 O
One of the dielectric has dielectric constant , and the

' : A : N s and their
dielectric constant K0, The fields in the dielectrics are D1 and D2 a

dielectrics are noted in the figure

l—~-—:»Sl

Determining the boundary conditions for D and E at a Dielectric boundary using

Gauss's law:

The free charge on the surface of the interface is @ and the vector normal to

~

"are as noted in the diagiam points from the surface of the first

the surface
dielectric toward the surface of the second dielectric using Gauss's law over the

surface.

[ﬁD-dS:Q

we have

[ﬁD-ds:_ f DIdS1+jDzd52+JD_~dS3:Q

bottom lop side

b canes 1A )
We shrink the pill box down so that it is so thin that any contribution due to
the flux of the electric displacement through the side will be negligible. Thus we set

the last term in equation(l) to be zero under this approximation our integral
becomes.

.[ D,-ds, +jD2'dS2 =()
lo,

bottom P

.

% (G
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We also make the diameter of the pill box so small that any variation of
and D over the surface can be ignored and can be considered constant at the side of

1

)
) |\ [) { ¢ ' : .Sz
the pill box. Thus since B, Is a constant over 'and "7 18 a constant over™? and

. » 1 j IS‘ ar 7 ;
eints in the it the area of the surfaces which we denole .Illrlply an are th(,_. Sealrre
we have

D .ns+ D, .ns = a.s O, A

Where < represent the surface charge density which means that

Sl R

Thus the normal component of the electric displacement vector D is

At ts stross e boundary by an amount equal to the free surface charge
density lying on the interface. However if there is no free charge on the surface of
the dielectric, then the normal component of D would be continuous across the

D =g keE : it
boundary. For the case value q we can derive the boundary conditions

for the normal component of E and normal derivative of ¢ Thus equation (3) can be
written as

(&0ke,E, — &kheE, ) n=c

(/(.ezEz ek )ﬁ ==

&
0 > ()
Which is consistent with the boundary conditions on E we derived for free space.
From £ =~V we have
e i
(—/ceZV@_ + ke, V ¢, ).n = o
: 0 > (6)
Which can be written as?
o o (o
ke, il g, B
on on |, £

4

()



Determining the boundary conditions for D and E at a dielectric boundary using
stokes’s theorem:

To find the boundary condition upon the component of E to the dielectric |

Interface we use a Gaussian pill box which straddles the boundary between two
different dielectrics as noted in the figure.

Kﬂ)

e
A

One of the dielectric has dielectric constantk'o' and the other has dielectric

constant kp?. The fields in the dielectrics are E, and = and their directions are
noted in figure. We use the requirement that

Under all electrostétic condition which also means that
[[]E = o
= (@)

Using the line integral along the loop defined in figure (1) we have that

[E,-diy+ [E-an+ [ B -di+[E-dh=0

top ( 1) : bottom (2)

sl

Where the definition of the line segments and fields are as noted in the figure. As
we shrink the height of the loop the contribution from' the sides becomes negligible
compared to the other integrals and can be ignored. Thus we are left with:

B+ [E,d = [(B, B )it 0

v

(1)

2y I, B o &y Ay

7B

N



e
dl, = —dl,

Because since our equation is true for all dI the integral is zero which gives us the
result that the tangential component of E is continuous across the boundary. Thus

E,=E,

»(12)
Which can be written in vector notation as?
Ax(E,~E )=0 i
We note that the tangential component of D is not continuous across the boundary.
Thus for
D, =¢kpE
I o I[).l 1 (14)
D, =&, kp,E, »(15)
From equation (12) we have
k k
IOI 102 > (16)

¢

The boundary conditions on " is found by using equation

B B
jd¢:—jE-dz-
A A

207

Which represent the relationship between the field, E and the potenﬁal¢ . Thus
¢~ = [(E,~E,)-dh

Where the line segment dh is shown in figure (1). As dh->0 the integral
approaches the vaiue zero vecause the field values are bounded. Thus the right side
of equation (14) vanishes and we have

> (18)

»(19)
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At the boundary. We now use this boundary conditien to find the s0

boundary value problems involving dielectrics.

Summary:
Rl T : ross the
Normal component of the electric displacement vector D, is discontinuous ac

D)
1

coundary ¢

o8 & S s & b El[ :E2!
fangential components of E is continuous across the boundary _
Lot D¢
Y PR o
i BZn

Normal component of B is continuous across the boundary

- _ oy : 2 —Hy =K
Tangential component of H is discontinuous across the boundary """ 'n

1.12. Electric susceptibility

In  electromagnetism, the electric susceptibility Xe is a dimensionless
proportionality constant that indicates the degree of polarization of a dielectric
material in response to an applied electric field. The greater the electric
susceptibility, the greater the ability of a material to polarize in response to the field,
and thereby reduce the total electric field inside the material (and store energy). It is
in this way that the electric susceptibility influences the electric permuttivity of the
material and thus influences many other phenomena in that medium, from the

capacitance of capacitors to the speed of light.

Definition of volume susceptibility

Electric susceptibility is defined as the constant of proportionality (which may be
a tensor) relating an electric field E to the induced dielectric polarization density P

such that:

[j) = EOXeI'ﬂ

Where Pis the polarization density?

! S g . . . .
_S0is the electric permuttivity of free space;

Xeis the electric susceptibility;

Eis the electric field.
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The susceptibility is also related to the pr)larlzablllty o[.i.ndl‘vidual- [;m"tnc‘::c o
medium by the Clausius-Mossotti relation. The .f}l»{i}f{@ﬂ}?}hly is ralasec Lo 1ts LRIRE
permittivity €Tby:

oma el e e

So in the case of a vacuum:

Xe = 0

. e ~' &4 y » )
At the same time, the electric displacement D is related to the polarization dcnsll):l

by: e
D= eB+P = gi(l + %) E = enegll
T R

1.12.2Molecular polarizability

A similar parameter exists to relate the magnitude of the induced dipole moment p
of an individual molecule to the local electric field E that induced the dipole. This

parameter is the molecular polarizability and the dipole moment resulting from the
local electric field Epochal is given by:

P = €9l IElocul

This introduces a complication however, as locally the field can differ significantly

from the overall applied field. We have:

P = Np = NeotBioen,

where P is the polarization per unit volume, and N is the number of molecules per
unit volume contributing to the polarization. Thus, if the local electric field is parallel

to the ambient electric field, we have:

XgE - ‘NCYE‘local

Thus only if the local field equals the ambient field can we write:.

Y. = Ne

-

Nonlinear susceptibility

' In many materials the polarizability starts to saturate at high values of electric
field. This saturation can be modelled by a nonlinear susceptibility. These
sisceptibilities are important in nonlinear optics and lead to effects such as second
harmonic generation (such as used to convert infrared light into visibie light, in

green laser pointers).
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the standard definition of nonlinear susceptibilities in Sl o ol
stand; ot el &
expansion of the polarization's reaction to

; \ 2) 1% 3) 1,3 by
P . .}‘“ b ¢ l’,\“]]"' l {,”‘\()) l‘,) 4 (,.”;\,( )]/ | :

>

" : , Py = 0)) The first
(Except in ferroelectyic materials, the built-in polarization is zero, 40
(1)

¥ 54 . bove.
¥ UNERY Aitarnas ity described a
susceptibility term, X » Carresponds to the linear susceptibility

(n)

' | quent nonlinear susceptibilities X
While this first term is dimensionless, the subsequent nonlinear susc p

have units of (m/Vn-1,

e . Aot : j where
The nonlinear susceptibilities can be generalized t ) anisotropic materials (

: (n)
each susceptibility X becomes an n+1-rank tensor).

1.13. E]t‘}‘f;‘s)st‘ltic energy in dielectric medija;

e PP
The energy of 4 System of charges in free Space due to charge ensity

: 03 o e
and the potentia] IS given by

e 1 3
e

The tota] work done w

as given by equation (
work is done not only

1) with the dielectric medig the
to bring real charge into positi

on, but also to produce a certain

state of Polarization in the medium’ And 7 ip equation (1) represent Mmacroscopic

variables. [e¢ Us consider a smal]

change in the energy

5Wdue to some sort of
change op

in the Mmacroscopic charge density

existing in a]] SPace. Then the
work done is given by,

We can relate the change o0 to a change in the displacemen of 0D

A
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Then the energy change can be change into the form,

OW : J'/z'.h'/)(/;.x‘ ‘‘‘‘‘‘‘ AT

E=-V¢ and /)(x)

total electrostatic energy find by Integrating between the limit D=0, D=D, then

Where was a localized charge distribiition? The

W= j a’%ffm ESD
0

A 4

—
(8]
N—t

[f the medium is linear, then

) RERS .
And the total Electrostatic Energy is

1
W =—[EDd’x
a0 e E
The above Electrostatic Energy equation (1) is valid m

acroscopically, only if the
behavior is linear. Now consider the problem the change

in energy when a dielectric
object with a linear response is placed in an electric field whose sources are fixed

Suppose that initially the electric field Eo due to certain distributi

s ; , A
Po ( )exzst In a medium of electric susceptibility 0 w}
position The initial Electrostatic energy is,

on of charges

ch may be a function of

]
W, = ~2--fEO.DOd3x

v i(S)
Dy &
Wheve P “0Vgeupees fixad in position a dielectric object of volume V1 is

introduced into the field changing field from E0 to E. The presence of the object can

&

be described by susﬁcept’ibilitvyg(x) which has value = inside V1 and o

outside V1. The energy now has the valye
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W, == [(ED,—D.E, )dx e )

Ui Tk & e 3 Jg
_1 , (E.D-D.E Y’x + ;J (£+E, ,)‘(D— D")a’ ¥ > (1)

/X( g 0):0 So we can write
: : ’
The second integral vanishes, since

A TN -
E+E, ¢ (12)

Then the second Integral becomes,

1 3
=—— W=D s
7 2f¢4( L i

——— (13)

Above Integration by parts transform into,

2 f¢V.(D—-DO)d3x =0
2- ’ =
Since V'(D_D") :O,because the source charge density o (Y)

unaltered by the insertion of the dielectric object.
is,

IS assumed
Consequently the energy change

of the object, since, cutside Vi1, B goé Therefore, Wwe can write

I
- =-—5Vf(a, — &) E.Eyd’x

—%{(16)
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ng the dielectric body is free space, then using the

If the medium surroundi
(16) can he e \pumwd in the form

definition of Polarization P, equation

e ————

: -
. — 17

: h) e : . a L lantvie This § - e ! \'. O
Where P is the Polarization of the dielectric. This shows that the energy density fa

') S
dielectric placed in a field 0 whose source are fixed is give n by

e o B

2 > (18)

This result is analogous to the dipole term in the energy of a charge distribution in

1
an external field. The factor 2is due to the fact that equation
energy density of a Polarizable dielectric in an external field,

1
permanent dipole. It is the same factor 2 that appears in (6). Equation (16) and (

show that a dielectric body will tend to move toward regions of increasing field Eo

(18) represents the
rather than a

17)

&E
© To calculate the fmce acting we can imagine a small generallzed

prov ided &
Sw

_displacement of the body = Then there will be a change in the energy <
Since the charges are held fixed, there is no external source of energy and the change
in field energy can be interpreted as a change in the potential energy of the body.

This means that there is force acting on the body.

= > (19)

Where the subscript Q has been placed on the partial derivative to indicate that the
sources of the field are kept fixed.In practical situations involving the motion of
dielectrics the electric fields are often produced by a configuration of electrodes held
at fixed potentials by conriection to an external source such as a battery. To méintain
the potentials constant as the distribution of dielectric varies, charge will flow to or
from the battery to the electrodes. This means that the energyv is being supplied from
the external source, and it is of interest to compare the energy supplied in that way
with the energy change found above for fixed source of the field we will treat only
linear media so that (1) is valid. It is sufficient to consider small changes in an
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existing contiguration.  From (1) it is evident that the change 1n

XD (1)

op(x ! i PE tential is
accompanying the changes ( )and in charge density and po

1 , i : 3
PP = PXD + D So Wb x
2 f( ) ——— (20)
Comparison with (2) shows that, if the dielectric Properties are not changed the two

term in (20) are equal. If, however, the dielectric properties are altered,

4 | .\‘) —> & (',\") + O< (x)

g -(21)

The contributions in (20) are not necessarily the same. Intact, we have just calculated
the change in energy brought about by introducing a dielectric body into an electric

field whose source was fixed (5’0 = O‘).
o)

Equal contributions in (20) would imply

=, but (15) or (16) are not zero in general. The reason for this difference lies in
the existence of the polarization charge. The change in dielectric properties implied
by (21) can be thought of as a change in the polarization - charge density. If then
(20) is interpreted as an integral over both free and polarization - charge densities
(ie. a MICTOSCopic equation) the two contribution are always equal. However it is
often convenient to dea] with macroscopic quantities. Then the equ

ality holds only
if the dielectric properties are unchanged.

The process of altering the dielectric properties in some way in the presence
of electrodes at fixed potentials can be viewed as taking placed in two steps. In the
first step the electrodes are disconnected from the batteries and the charges on

; g0 —(
held fixed (% = 0)
is ;

them

. With the change (21) in dielectric properties, the energy change

SW, = ifpacp,aﬂx
| 2 T oy

, Where ™51 4 change in potential produced? This can be shown to yield the resu]t .

cond step the batteries are connected again to the electrodes to restore

their potentialg to the original vajyes, There will be a flow of charge op 2 from the

—_—

batteries accompanying the change in potential v

'" Therefore the
energy change in the second step is

-

§

/, Y ”[P} (

)
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Since the two contributions are equal. In the second step we find the external source

/

il —21."('05(1)2 +DSp, )dzx =—20W,

changing the energy in the opposite sense and by twice the amount the initial étep
the net change is ;
/

g o _[ p&D, d’ x
2 (24)

Symbolically,

oW, =—6W,

SERRETE )

, : : i e ke
Where the subscript denotes the quantity held fixed. If a dielectric with 4

moves into a region of greater field strength, the energy increases instead of
decreases.,

Ejl4C¥ausius-quAs_gti equation: /]

Let us now investigate what a dielectric equation of state actually looks like.
Suppose that a dielectric medium is made up of identical molecules which develop a
-_—

: pr,c.ps_,sf: Q

p=uank

dipole moment

When placed in an_electric field E. The constant ’o_t_is called the molecular
polarizability. If ¥ is the number density of such molecules then the polarization of

7’7

N a
P = g4 8nt €0 L,

M

the medium is

P=Np=NoqFE,

Pm : Ny : :
where o e the mass density, '15 Avogafiros number, and Af_E the molecular
weight. But, how does the electric field experienced by a individua] molecule relate
to the average electric field in the medium? This is not a trivial question since we

it DR A AN R AR
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expect the electric field to vary strongly (on atomic length-scales) inside the
dielectric.

Suppose that the dielectric is polarized with a mean electric field VthCh 15
unifarm (on macroscopic length-scales) and directed along the z -axis. Consider one
of the molecules which con titute the dielectric. Let us draw a sphere of radius a
about this particular molect le. This is intended to represent the boundary between
the microscopic and the macroscopic range of phenomena affecting the molecule.
We shall treat the dielectric outside the sphere as a continuous medium and the
dielectric inside the sphere as a collection of polarized molecules. According to
Eq. (3.29) there is a polarization surface charge of magnitude

(rygi‘ﬁ) : s
on the inside of the sphere, where are spherical polar coordinates, and
P=P%=cle—1)Eo2 )

is the uniform polarization of the dielectric. The magnitude

SR
-~ E’
of  atthe molecule due to the surface charge is

s 1 /’ apo|c039d5’

47 €g . al

Where dS =2ra’ sinfd# is a surface element of the sphere. It follows that

Eoi=Eor=10

at the molecule. Thus, the field at the
molecule due to the surface charges on the sphere is

It is easily demonstrated that

o B

= T
The field due to the individual molecules within the sphere is obtained by summing
over the d} le fields of these molecules. The -electric field at a distance #from a

dipole & is

O
E=-

e\ 8

[_g_. 3(:»?)!’}‘

4 €

It is assumed that the ipole moment of each molecule within the sphere is the same,
and also that the molecules are evenly distributed throughout the sphere. This being

the case, the value of  at the molecule due to all of the other molecules within in
the sphere,
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Te=Yy=Ye= T
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[t is easily seen that . Hence, the electric field at the molecule due to the

other molecules within the sphere vanishes.

It is clear that the net electric field seen by an individual molecule is

P
E=Ep++ —.
deo
Eq
This is larger than the average electric field in the dielectric. The above analysis

indicates that this effect is ascribable to the long range (rather than the short range)
interactions of the molecule with the other molecules in the medium. Making use of

P = eo(e - l)Eo
Eq. (3.88) and the definition , We obtain

G NAg‘m.a
e+ M

This is called the Clausius-Mossotti relation. This formula is found to work pretty
‘well for a wide class of dielectric liquids and gases. The Clausius-Mossotti relation
yields j

Aﬂoisson’s Equation

b3 f — s 5 s $ ‘ . i ‘
Poisson’s Equation is a differential equation which is obtained for space

distribution of charge on the basis of Gauss law. And the-equation is given by,
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According to definition, Laplace Equation is given by,

6"’:' - = ; - 25 ‘,/ —1(Q)
SR o NI Gz

(C.e)div.grad v =0 (or) Vv =0

Poisson’s And Laplace Equation:

The static electric field E is described by the equation,

W15 = Ao —

WV JE =0

. L ()

E=-Vg

| E)

Where E s gradient of scalar function, ¢ 1s Scal

Substitute the value of E (equation (3)) in equation (1)

T
—V?p = A7
(OCHIV 2 = A7

ar potential.

This equation is called the Poisson’s Equation.

If the medium under consideration contain no free charges then equation (4

reduces to Laplace €quation (i.e.J in free space 7 = 0

i , then the scal . o
satisfy Laplace equation, scalar function
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This is called Laplaco’s equation.

Eniey Bmmdary value pmblems: /7

Many problems in electrostatics involve boundary surfaces on which either the
is specified. The formal solution of such

f Green functions. In practical situations
) the discovery of the
Consequently a

potential or the surface-charg > density
problems was presented using the method o
(or even rather idealized apprcximations to practical situations
correct Green function is sometimes casy and sometimes not.

to electrostatic boundary-value problems have been

number of approaches
i
Green function

developed, some of which are only remotely connected to the

method. One of the methods are the method of images, which is closel
method for solving

y related to

the use of Green functions. We shall now discuss a general

electrostatic problems, without specifically solving a differenti
method of images concerns itself with the problem of one or more point charges in
For example, conductors either grounded or

al equation. The

the presence of boundary surfaces.
held at fixed potentials. A small number of suitable placed charges of appropriate

magnitudes, external to the region of interest, can simulate the required boundary
conditions. These charges are called image charges and the replacement of the
actual problem with boundaries by an enlarged region with image charges but not

boundaries is called the method of images.

A simple example is a point charge located in front of an infinite plane
conductor at zero potential as shown in Fig A. It is clear that this is equivalent to the
problem of the original charge and an equal and opposite charge located at the
mirror image point behind the plane defined by the position of the conductor.
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Fig.1 Solution by method of images. The original potential problem is on the left, the
equivalent image problem on the right.
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Point Charge In The Precence Of a (3
(,hax%( In The Presence Of a Grounded (‘””‘hl(‘tin;r ‘§p11err*'
’* -

Consider a conducting sphere of radius a maintained at zero potential and a
charge q at a distance y from the centre of the sphere, Suppose the centre of the
sphere coincides with the origin. Since charge q is outside the sphere, the image

position v’ will lie inside

Conducting sphere of radius a with charge and image charge 9 The potential due to

the charges 9 and 9 is,

¢(x) 2 g/ 4re, r q'/47r<'90
’ el e — (1)

>

We must now try to choose 7 and'ly | such that this potential vanishes at [x|

If n is a unit vector in the direction x, and” a unit vector in the direction yJ°

?

then
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If x is factored out of the first term and ot out of the second the potential at X=a

\ /4 =3 /47[5
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A becomes
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Make¢(x:a)zo

position of the image charge are

, for all possible values of """ = Hence the magnitude and

q =
i 1 P

We note that as the charge q is brought closer to the sphere, the image charge grows

in magnitude and moves out from the centre of the sphere. Where q is just outside

the surface of the sphere, the image charge is equal and opposite in magnitude and
lies just beneath the surface.

Now that the image charge has been found, we can return to the original problem of
a charge q outside a grounded conducting sphere and consider various effects. The ,
actual charge density induced on the surface of the sphere can be calculated from the

normal derivative of ¢ at the surface.




~ 3Ly -

I | o l

/xn ~yn'ln , (¥ +y"—2xpcos 7) g

|
xX=aqa

e =D Z cos :

e il (5)

4 5 ~1/2
3 @1 A j
:[x“ +——2—2x—c057/]
I ) x=a

A 4

=G
(@)
—~r

Substituting equation (5) and (6) in (2)
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f radius a as a result
Surface charge density @ induced on the grounded sphere o

s the centre of the
of the presence of a point charge q located at distance y away from

il : ) el
sphere, < s plotted in units of ( 4’”“) as a function of the angular position
e

away from the radius to the charge for y=2a,4a. Inset shows lines of foree for
y=2a.The concentration of charge in the direction of the point charge q is evident,
especially for y/a=2, it is easy to show by direct integration that the total induced
charge on the sphere is cqual to the magnitude of the image charge, as it must be
according to Gauss's law. The force acting on the charge q can be calculated in
different ways, One way (easiest) is to write down immediately the force betw

r

een

the charge q and the image charge 4 The distance between

them is
; e
ey =;V(]—--- 5 -
. B H y
ence the attractive force, according to
Coulomb’s law is
2 3 =2
’F ' AT 7 g st :
2 T e——
dizze, as iy v

For large separation the force is an inverge cube Jaw
proportional to the inverse Square of the distance a,
sphere. The alternative method for Obtaining the forc
acting on the surface of the sphere. The force 0

P il ) /
( A‘Eo da, )Alhere o
: /

V\Tay from the surface of the
e is to calculate the totg] force
N each element of areg da is
1S given by equation (
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The total force acting on the sphere is given by the integral,

5 2 5 el ‘
'F,: -s»)q ] [a] (1_‘(2_2'J J‘ COS)/ 3 dQ
SZwE o\ P y ( > 5 ]

e = = PRl

% X

The whole discussion has been based on the understanding that the point charge q is

outside the sphere. Actually, the results apply equally for the charge q inside the
sphere.
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