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ELECTROMAGNETIC WAVES
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Electromagnetic (EM) radiation 1s emitted by all matter and consists of orthogonal
electrical and magnetic waves. All EM travels at the same speed through a vacuum
(186,000 miles per second or 300,000 kilometers per sec.). This radiation is generated
by a movi't;:g.__‘charge or charges. All matter consists of atoms in motion and these In
turn COﬂSiSfr.:ﬁﬁ,. pogi:ﬁﬂvely charged protons surrounded by a cloud of negatively
charged 'electrovijg.“Tﬁe vibrating motion of the atoms causes the cloud of electrons to
oscillate and this oscillation generates electromagnetic radiation. Since all

electromagnetic radiation travels at t frequency and wavelength

he same velocity the y and wave
of the generated radiation depends on the y of the oscillating electron cloud.

Thus, on average, Cegl’g_lgigt;!i (say those at room temperature) generate_long
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with the same form applying to the magnetic field wave in a plane perpen(.iICU]'al' e
electric field. Both the electric field and the field are perpendicular to t%)e direction of
symbol ¢ represents the speed or other electromagnetic waves. The

s arises from Maxwell's equations. The 2

travel x. The
wave equation for electromagnehc wave

£=7 sin(ke-wt)

form of a Plane wave solution for the electric field is

B= B, sin(kr - wr)

and that for the magnetic field

To be consistent with Maxwel|'s equations, these solutions must be related by
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___ _ the vector product E x B is in the
Electromagnetic Waves
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Electromagnetic waves carry energy as the
an energy density associated with both the electric
Energy transport per unit area is described by the ve
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which is called the Poynting vector. This €xpression is a vecior product, an
the magnetic field js perpendicular to the electric field, the ma‘gni'mde can bé
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where p = (g because there's no charge density mm

Takmg the curl of the curl ¢ Juations gives:
V x (V X E) = ——EVX‘“’

Vx(VxB) = mgVXE

We can use the vector identity
Vx(VxVv)= viv.

where V is any vector function of space. And
Viv-a

where UV js 4 dyadic which when Operated onbg :
a vector. Since S

| VB

then the first term on the right in the
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Lorenz gauge condition:

A = 08
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embertian operator. (The square box is not a typographlcal error; it is the
| symbol for this operator.)

ye Parameters

aximum displacement of the medium in either dircction is the amplitude of
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Wave parameters are the group of charactenstics that identify a wave. They are
shown in the figure at the below. From these components, one can usually derive
other wave p'z\‘operties (1.e. period, power and intensity) based on known Syt
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Period {time) = 1/Frequency
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Electromagnehc waves travel through a vacuum
2.99792x108 m/s, which is known
the speed of light, w

at a constant velocity of

as the speed of light, c. The relationship between
avelength, and frequency is:

c= AV L'; ',\U

When light passes through other media, the v

energy of a photon is fixed, the frequency of a photon does not change. Thus for a
given frequency of light, the wa\W must d

ecrease as the velocig decreases. The
\\\L decrease invelocity is quantitated by :
o

elocity of liw. Since the

the refractive index, n, which is the ratio of ¢ to
the velocity-of 1 ht in another medium, v: .
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field for a plane
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be derived directly from Maxwell's Equations. For a general
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_mﬂl_Pe_rgmn\wfy and permeability given by (6. 10) = (€, 80 4, o) the
cimpedance is givenby: =~ == —
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the conductivity is non-zero, the above intrinsic impedance is a complex
indicating that the electric and magnetic fields are not in-phase.The
impedance of free-space has nothing to do with the electrical impedance of

na. Also, there is no reason to have the impedance of an anicnna match the

s

— -

lmpedance of free space (no mismatch loss occurs)
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Since the propagation constant is a complex quantity we can write:
7= @rap
where

a. the real part, is called the attenuation constant

B, the Imaginary part, is called the phase constant

That B does indeed represent phase can be seen from Euler's formula;
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also called attenuation
» is the attenuation of an electromagnetic wave
% thro.ugh a medium per unit distance from the source. It is the real part
Opagation - onstant and is measured in nippers per meter. A neper is

ly 8.7dB. Attenuation constant can be defined by the amplitude ratio;

W ithe term attenuation constant
r attenuation coefficient,

ation constant per unit length is defined as the natural logarithmic of
sending end current or voltage to the receiving end current or voltage.

s in free space, dielectric and conductor

e propagation of an electromagnetic wave through a uniform dielectric
- dielectric constant the dipole moment per unit volume induced in the
he wave electric field E There are no free charges or free currents in the
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ns for the propagation of electromagnetic waves through 2
are the same as Maxwell's equations for the propagatior of waves
ept that where is called the refractive index of the medium in
de that electromagnetic waves propagate through a
ough a vacuum by a factor This conclusion
xwell's equations were invented) is the basis of
.The form of the dielectric constant

propagating through a transparent,
lisplacement inside the medium is
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The propagation constant, symbol y, for a given system is:‘cle_‘fmed the ratio of the
amphitude at the source of the wave to the amplitude at some-distance x, such that,
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@, the real part, is called the attenuation constant
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in the entire visible spectrum,
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Let us now suppose that
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per molecule, and that inst osarliation frequency for all electrons, there
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are electrons per molecule with oscillation frequency and damping
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where the oscillator strengths satisfy the sum rule,

A more exact quantum mechanical treatment of the response of an atom, or

molecule, to a low amplitude electromagnetic wave also leads to a dis i
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/l £} 9
of the form (4.18), except that the guantites , , and

calculated from first principles. In practice, this is too difficult exc

electromagnetic waves in a conductor /’

Consider the propagation of an electromagnetic wave t!u-o
which obei,rs Ohm's law:
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e that the electrons are
where ¥ is the number density of elecb"o’ns.Lef U:}m % .
bound "quasi-elastically” to their rest pOSmOTIS. so g “owsseei; & I: e o
positions when displaced from them by a field £. It fo
differential equation of the form
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is the characteristic oscillation frequency of the electrons.
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Into account the fact that an e
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Thus, we

propagah'ng throuoh a conductor dec: o
which is termed the skin-d

conclude that 1ha 5 i
onclude that the amplitude of an electromagnetic wave

exponentially on some length-scale, d,
from Eqthat the skin-depth for a poor

kd>» 1

epth. Note,
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for a poor conductor, indicating that the
the conductor before
@ 2> € egw

which In

¢ wave. Note, also, that
wave penetrates many wave-lengths into

decaying away Consider a "'good" conductor for

thus limit, the dispersion r

relabon yields

e
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Substitution into Eq

can be seen that the skin-depth for a good conductor decreases with Increasing
Ed—

vave frequency. The fact that indicates that the wave only penetrates a
ew wave-lengths into the Conduuor before decaying away.

ow the power per unit volume dissipated via holmic heating in a conducting
“medium takes the form

P=j-Exol "

sider an electromagnetic wave of the form The n
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the region is written
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Here, ¢ is the conductivity of the medium in ques
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where € is the dielectric constant of the mediumny,, It followss, from the above
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extremely low frequency 1:0h R "IQ-S -
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incident Normal

Ty reflected
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The process in which r: adiaticn, meeting the boundary between two media "bound’s

back’ to stay, in the f 1rst medium Any kind of radiation wave or stream of particles
can be reflected. e P i

Y
{efracnon o

—— i

Normal

Incidr.nt\ : oM
ray \,l\ N b y > H‘:. '
/ ey First medium . 3

Refracted ray

24

on into the second r medlum Any kind of radiation, wgve
refracted Refraction in any case depends on the refrs

The process in which radiation incident on the boundaty betweer i..o sedia

passes.




oy >
<& 'ﬁi’/
- vt PN ﬁff}
- LJ
e A »
,ﬁ\\‘«\ &« #
i:: “
e &
G B W8 2
G N e pe 5
% , X ‘3 ’,l;/:l JZ (f 4 I'Juz — m Eﬂ 7
(#) . / ol e c 4 g
o 2 Ju ‘
g ‘ 1etic power flux
# N 4 " > 3 clectroma P
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conclude that the
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is dissipated via ohmic heating. We thus
attenuation of an elect
L

Clromagnetic wave propagating through a

conductor jg of ohmic power lusses.
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Consider a typical metallje conductor .';uch as copper, whose electrical condu. - iy
6 % 107 (Qn)-!
at room temperature is about i

- Copper, therefore, acts as
conductor for aJ1 ¢

aves of frequency below about 108"
5 is thus

!m'tromagne!ic w
skm-(.h-prh N copper for sych wave
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It follows that the skin-depth js about 6 ¢p at 1Hz, by only aboyt 2mm g
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arization:

’R' on of the vibr: tions in

\eSUL : 4 € Wave NOrmally ;
The vibration can be any direction\i}lT\' 2 %.ﬂi"e-
; s o R
ropagation out way ..\raaxa\ho\nfsajd to

—1ar to the direction of

 defines the m&@ﬁgm perfectly smooth surface. It is used in
physically-based Hlumination moedelg to describe how Iigﬁmfrom micro-

facets. Fresnel’s €quations  degscripe the reflection '

glecromagnetic waves 4

flansmission coefficients f,,

and transmission of
is, they give the reflection and
I' waves paralle] and perpendicular to the plane of

- medium where Snell's Law can be used to relate the
dent and transmitte angles, Fresnel's Equations can be stated in terms of the

an Interface. That

of incidence and transmission
e ———

Incident
light

terference.
: o
tht is incident onto an obstacle which contains two very small glits a distance d

t, then the wavelets emanating from each slit will interfere behind the
,]e = passing through each slit are diffracted and spread out. At

€s where-the single slit diffraction pattern produces nonzero intensity, the
R o o constructively or destructively interfere.

, —
ve let the light'fgl.‘l onto a screen behind the obSFadE, we Will. Obser;vg'ma :pafte;:n

bright and dark stfipes on the screer, in the region whefe with é smgig-sl:t s
ly observe a diffraction maximum. This pattern of bright and dark

n
known as an interference fringe pattern

g
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cal physics, the diffraction Phenomenon is Je:
ng of waves around srr;amﬁes and the spreading
ungs Similar effects occur :
varying refractive index, or
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3 Theidea! fme-of-
sight L0} propaga-
sonof EM waves 5 dis-
uptedby the presence

of large objects that

block the signal path.

Radio signals n

Y also underg
. ~ undergo diffraction Itis found that w
an obstacle they tend to ravel aro,

hen signals encounter
und them

T'his can mean that a signal may be
t may be "shaded"
noticeable

e BBC lon

eceived from a g *
though ;

; ject
between them_ Thjs i large e

on some long waye broadcast
wa

& Wave transmitter on 198 kHz is audible in
> other SIS
€ other transmissions could not be heard. As a result the long
B&¥E transmissions can be heard in tiany more places than transmissions on VHE
FM

transmissions

1€r

M
B
e

#8 understand how this happens it is
I

SIates that each point on

necessary to look at Huygen's Principle. This
a spherical wave front can be considered as a source of a
Seeondary wave front. Even though there will be a shadow zone immediately behind
gnal will diffract around the obstacle and start to fill the void. It is
found that diffraction hen the obstacle becomes sharper and
For a radio signal a

the obstacle, the s

IS more pronounced w
more like a "knife edge mountain ridge may provide a
. Ot produce such a marked effect.
Ibis also found that low frequency signals diffract more markedly than higher
1at signals on the long wave band are able to
iProvide coverage even in hilly or mountainous terrain where signals at VHF and

higher w

sufficientl sharp edge.-A more rounded hil] will n
@equency ones It is for this reason I

uld not.

o Coherence 7

“Coherence is an ideal property of waves that enables stationary (i.e. temporally and
spatially constanm“ contains several distinct concepts, which are limit

Icases that never occmity but allow an understanding of the physics of waves,
tand has beco

Me a very important concept in quantum physics. More generally,
oherence describes all properties of the correlatia= b -tieer physical quantities of a
gle wave, or betiveen several waves or wave packets.

ference is nothing more than the addition, in the mathematical sense, of
Hons. In quantum mechanics, a single wave can interfere with itself, but
to its quantum behavior and is still an addition of two waves (see
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or destructive interferences are limit
if the result of the addition is

tive
npenment) Thus ll‘l\p!lt‘b that construc
7 e, even
cases, and that waves can aIwav:, mterfer

complicated or not remarkable. =
vave of greater amplitude
When interfering, two waves can add together to create a ¥ gr

om each other to create a
than either one (constructive interference) or subtract fr S &
(destructive mterference) epending on

- .- & nL
wave of lesser amplitude than either o :
F es are said to be coherent if they have a constant

w0 wav
their relative phase. Two interference, a measure

r the 1
relative phase. The degree of coherence is measured by
erence.

ve interf
of how perfectly the waves can cancel due to destructive
5 different points in
Spatial coherence describes the correlation between waves at Ir h'
S relationshi
space. Temporal coherence describes the correlation or predictable re B

between waves observed at different moments in tme. Both are observed i

the experiment and Young's interference experiment. Once the trmces are obtampd
in the Michelson-Morley experiment, when one of the mirrors is moved away
gradually, the time for the beam to travel increases and the infringes become dull
and finally are lost, showing temporal coherence Similarly, if in Young's double slit
experiment the space betwween the hwo slits is increased, the cohu—ence dies gradually

and finally the infringes disappear, showing g spatial coherence.

Temporai coherence

The coherence of two waves follows from how well correlated the waves are as
quantified by the cross-correlation function The cross-correlation quantifies the
ability to predict the value of the second wave by knowmg the value of the first A
i y s \
an example, consider two waves perfectly correlated for all times. At
first wave changes, the second will change in the same way.

exhibit complete constructive interference/ Superposition at al

i times, then it follows
that they are perfectg.y cqher - As will be diﬁcussed be]ow the seconc; I:,:av : n(;:(:

not be a separate entity. It could be t?he ﬁrst :

any time, if the
If combined they can

t time or position. In
ﬁunchon (sometimes




(red) and a copy of
of the wave is infinite since

~: The amplitude e
P of a wave whose phase drifts significantly in time 1c as a function of

‘t.;me : (:d) and a copy of the same wave delayed by 2tc(green). At};{ii}y particular
, fime t the wave can interfere perfectly with its delayed copy. But, since}élf the time
 the red and Breen waves are in phase and half the time out of phase, when averaged el

sover t any interference disa ppears at this delav. ) ; E

& émpoial coherence is the measure of the average correlation between the value of a :
pWave and itseif delayed by 1, at any pair of times. Temporal coherence tells us how -
monochromatic a source is. In other words, it characterizes how well 2 wave can i ‘ |
anterfere with itself at a different time. The delay over which the phase or amphiode v
'vwanders by a significant amount (and hence the correlation decreases by sigruficant -
famount) is defined as the coherence ic. At =0 the degree of coherence is perfect =

whereas it drops significantly by delay tc. The coherence length Le is defined =s the

dhistance the wave travels in time 1c

Spatial coherence

In some systems, such as water waves or optics, wave-like states can EﬂEﬂd OVer §
or two dimensions. Spatial coherence describes the ability for two pomni
spa.te, x1 and x2, in the extent of 2 wave to interfere, when averaged over tim
précisel}', the spatial coherence s the cross-correlation belweaxm
for all imes. If a wave has only 1 value of amplimdgm an
perfectly spatially coherent. The range of separation between
ch there is significant interference is CM i
nt type of coherence for thie Young's double
o Scal ima,gmg s}mtenﬁ and M
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7/ The Po_vnh’ng vector usually written as S is the d

The

It 15 4

e

g
oherence” to refer to d_le VlSIbLl\lty

" ﬁal €
people also use “spa shifted capy of itself.

il N times .
s combined with a spatially

when a wave-like state is
Examples of spatial coherence

Spatial coherence

- A plane wave with an infinite coherence length.
%f[he Poynting Vector Luly

lirection in which energy travels i
an EM wave, we will not go into the vector calculus, butit is given by taking the
cross product of the vector field of E and the complex conjugate of the vector field 11

S=ExH

This represents a power flow along the z axis. The average in watts per square metre
1s given by:Sav = LEQH(QZ Watts/m?2

The phase velocity is the rate along the z axis that a point of constant phase moves

which is the speed-of light and is apy,

EXPU: Lcut;ui Ngfa
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e Plasmon S.. At low k k, the su
(blue)ln the free o electron m

rface Plasmon curve (red)
odel of an electron gas,
w?
r

E(U)) =1- z;i"

Dispersion curve for surfac
approaches the photon curve

ic di ic function is
which neglects attenuation, the metallic dielectri

where the bulk plasma frequency in ST units 1s -

i

<

ne?
gom”

wWwp ~=

m* is the effective
where nis the electron density, e is the charge of the the electron,

———— rs:on relauon
mass of the electron and €0 is the permittivity of free-space. The dxspe

k increases, the
is plotted i in Fxgure 4. At Tow k, the SP behaves like a photon, but ” e
di elation bends Sver and reaches an asymptonc limit conespon mngto &
dispersion re e k.
suxfacv plasma froquency Since the dlspersxon curve lies to the right Ofl th;-’ ‘?h‘,
line, ® = k ¢, the SP has a shorter wavelength than free-space radiation such tha |
out-of- plane component of the SP is purely 1magxnary and exh;bﬂs evanescm

decay. The surface plasma frequency is given by
Wep = UJP/\/ 1 += &

In the case of air, this result simplifies to

wep = wp/ 2

If we assume that £2 is real and £2 > 0, theﬂ it
which is satisfied in metals. Blectmm 1
experience dampmg due to Ohn'uc

effects show up in’ as "aﬁ _imaginary
dielectric funcnon of a metal is ex
real and i xmagmary Pparts of the
el" so the wavenumber can be
components The wave vector. 8 ‘

of the electromagnetjc wave suc,
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+ 1 _e ’I‘h g at an angle 6 t €s, ldb(_‘l(»_‘d as u+ 'k_l = 7 o

0 angle -b. ese wayeg 8t com O the , and y- ip Figure (a). The

> drawn on the ned ip, hile the . '
can be dra n the SUperposeq Way -+ Figure (). Nog o e
b Otice that horizontal lines

COrreg
out of P bond to zeyq field. Along these

Wave.Since we know E=0

axis, w

The distance separating adjacent zero-field |;
conducting walls in Figure (@), is glven as th i3
2is determined by the angle g 454 by

wavelength A. For a given wave v,

. S in Figure (b), or separating tl e
i ? ‘mension a:in Figure (b). The distance
e distance between wavefront peaks, or the

lOCit’y uu the fr . a
: / equency is f = uu/A. If we fix the
wall separation at a, and change the frequency, we must thett '%‘;‘o:"éhéhge the angle 6

j WEREEG maintain a propagating wave. Figure (b) shows wave fronts for the u+
wave. The edge of a +Eo wave front (point A) will line up with the edge of a -Eo
front (point B), and the two fronts must be A/?2 apart for them =1 mode.
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let us take a look at the field pattern for two modes, TE10 and TE20

In both cases, E only varies in the x direction; since n = 0, it is constant in the

direction. For TE10, the electric field has a half sine wave pattern, while for TE20.

full sine wave pattern is observed.

Rectangular Waveguide - Wave Propagation
¢ can achieve a qualitative understanding of wave propagation in waveguide b
considering the wave to be a superposition of a pair of TEM waves.

Let us consider a TEM wave propagating in the z direction. Figure shows th
wave fronts; bold lines indicating constant phase at the inaximum value of the field
(+E0), and lighter lines indicating constant phase at the minimum value (-Eo). T

waves propagate at a velocity uu, where the u subscript mdmates media unbounded
by guide walls. In air, uu = c.
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- 4.20. Retarded potentials /\

- the sane form as the mhomo;,enoous W

ave
erte the solutions to the

Cquation (2:103), so we can immed
S€ equations as

1 ')l N
#(r,1) s 4 .[:_ ,,)/, v
L - 10 "’)
A(r,1) ) /]rh— r’l

Moreover we can be sure that these solutions are unique, subject t@
- Proviso that infinity is an absorber of radiation but not an em:ittfer
Important point. Whenever the above solunvons are present'e L in
there is a tacit assumpbon that they are unique. After all, if the
- why should we choose to study them instead of o‘ne of thg oth
.‘ ‘he/ uniqueness of the above solutions has a physical 1ntzrpre
qs. (2.141) that in the absence of any charges and

tromagnetic fields. In other words, if we observe an electr:
ol



we have
Since the times tAD and tAC must be equal, .

Wave Equationt
JInhomogeneous. Electromag“::;-—a——%-’" S i e SRR 5 Soweces ot
charge i can be written in the form

Localized time-vary’ ing " uations

electromagnetic waves in Maxwell’s :uon {or often *nonhomogeneous
eneous electromagnetic W oz ces to the wave

of ainhomog : The addition of sources

th
electromagnetic wave equation”) Wi A “
artial differential equation : inhomogeneous
.n in covariantform as

a vacuum.

equations makes the p

The relativistic Maxwell's equations can be writty

4" doef 636-3‘4" = A’"‘ap = ‘I‘OJF(SI)
4w

04+ ¥ 9,8°4* = Y a4, = —""J (cgs)

‘where ] is the four-current

= (cp,J),

d  det , def de
6.'50 G L i R (3/3ct.V)

is the 4-gradient and the electromagnetc four-potential is
4" = (0. Ac)(ST)

A" = (¢, A)(cgs)

with the Lorenz gauge condition

BA* =0




e that the 4-cu - i

. rrent :

P We shall now :js to be evaluated at the retarded time; i.e., at a time ﬁf
emonstrate that all observers obtain th,P same:':

for each ele
.. entary contribution to the integral. Suppose that 5 “and 5
in the standard configuration. Let unprimed and primed- |

e corres ' i :
esponding quantities in § and 5, respectively. Let wus

(0)0)010) - (r,y,z,d] o
to P and to the retarded event for

nates
4 s 3
V are evaluated. Using the standard Lorentz transformation (2.19)

) _ (@)
the interval between events P and is zero, and the fact that b:oth‘:

 negative, we obtain

; ur
e gl =y (‘i——;),
c

Wwhere v is the relative velocity between frames $' and 5,

z? :E‘f.’a’z +’;‘;? :
et It follows that

o 7”'7(”:":"*' {_;) = rq (l-ls%mf}

where ¢ is the angle (in 3-space) subtended betwi
w know the transformation for 7 What

€ no
dv =8V

t be tempted o set
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i ¥ e
! and  axes are

: : I the : & v
problem. Now, the dimensions s #-dimension these e

both § and 57, accordﬁg to Egs.(2.19). For the
= q(dz — vdi)

. .

apt= (i f’ cost) 1V,

dV' st =aVir

It follows from Egs. (2.144) and (2.147) ithat
rernain valid even when S and 5§’

are not in the standarc

avir

(/#]avr
Thus, is an invariant and, therefore, i

linear trans[ormanons such as a general Lorentz
adding 4- tensmrs evalqa;ed at different 4-points i

right-hand sufg of Eq (2 142) is a contra vay
equation can betp;

(2.96).
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These solutions are known as the retarded Lorenz gauge potentials. They re
a superposition of spherical light waves traveling outward from the sou

waves, from the present into the future.

Retarded sphericy] Wave
MmOVES away from the SO
wave front moves backw

« The SOurce qf the W e A !
‘ave e 3

rce curs at time ¢

S for t>p E

as j me

- The wavye front o
ards in time

lm r'eases |
. Or advanceq solutions, th l
om the Source ty T ‘

I

In the case that there are

no bOLmd 3
: aries syr di

units) of the nonh £oites SEOURdInG the g S :

) OmOgLnLQUS wave equations g the sources, the solutions (cgs

¢ S are

d (t’ + & ‘
o(r, i) = ,K.‘f it t)

and

where

e T
c

15 a Dirac delta function.

For SI units

P

47T50

o

dm

For Lorentz-Heaviside units,

s i

1

47

here are also advanced solutions (cgs units)

B t)

p(r,t) = / ]r——r'f




and

d e T o g
c :
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Alr, )=

o : velling from the f
These represent a superposition of spherical waves tra g
the present

4.2.1.Radiation from an ()sci”ating_Elg_Ctr‘iS_D_iEP'e : ,_ :
The basic me: hanism of c;}!;é‘rromagneﬁc radiation is .diSCUSSEd o Note 10, Fg
charge to radi: se electromagentic waves in free space, it must Pe either accele,
or decelerated. Charges undergm’ng oscillatory motion are continuousl
and decelerated a

waves are radiate

Y accelerate

nd if the velocity of charges is nonrelativistic, electromagen

d at the oscillation frec . Radiation from antennas cay, bel
L

analyzed by sy perposing clementary radiation fields emitted by individual electrong
as shown in Note 10.

Electric fielq lines

Animation shows the

electr,
verticall y

at the origin. Near the.
dipole leaving 4 positive ‘

oscillating
e of a static
Owever, at 4
or greater,
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