S ————

25] CONSTANTS |

Constants in C refer to fixed values that do not change during the execution of a program. C

supports several types of constants as illust ated in Fig. 2.2.

| CONSTANTS E

l

[

f R - |5
‘ R K
' Numeric constahts + Character constants P

it Bl

- e S e LTI
/ ' y =X
. SR U
e er g | Sting: " E)
. constants 1| constants - £ 3

ue—w, ST ST

Integer Constants
An integer constant refers to a sequence of digits. There are three types of integers, namely,

- decimal integer, octal i ateger and hexadecimal integer.
Decimal integers consist of a set of digits, 0 through 9, preceded by an optional — or + sign.

Valid examples of decimal integer constants are: L
123 -321 0 654327 +78~ \

Emhedded spaces, commas, and non-digit characters are not ’permitte& between digits.

For example,
: 15750 20,000 $1000

are illegal numbers,

S ,_,__—-‘ 2, ’

LBidbintYariablos, and QackTypese

fined earlier.

» of digita from the set 0 through 7,

. . v 1 was not de
Note: ANSI C supports unary plus which was not defi
ts of any combinatior

An octal integer constant CONSIK
0 Some examples of octal integer are:

with a leading
037 0 0435 0651
) ’ . e ma
preceded by Ox or 0X g considered as hevadecimal integer. Tt:er):t th)(;
A through F or a through - The lotter A through F repres
examples of valid hex integers:

A sequence of digits

also include alphabets
re 10 through 15, Following are the

numbe) ’
OXN2 0xOF 0Xbed Ox
; cn)
We rarely use octal and hexadecimal numbersn programming,/ 67 on 16-bit
. : ' ' H . 59727610 L0~ /
0 Jargest integer value that ean he stored 18 machine-dependent. It 15 5 :
“he largest imteger value that o atol I N integer

o and 2.147.483.647 on 32-hit machines. Tt s also possible to store | i
he constants.

i< on these machines by appending qualifiers such as UL, and ULtot

| SN

nac
consian

Examples '
56789U or 56789u (unsigned mteger) \
98761234 7UL or 98761234ul - (unsigned long integer)

9876543L or 98765431 ftlong inFeger) o
The concept of unsigned and long integers are discussed in detail in Section 2.7.

“Example 2.1 Representation of integer constants on a 16-bit computer.
stants on a 16-bit machiue. The

39767 are not properly stored on
(by appending L), the

The program in Fig.2.3 illustrates the use of integer con
autput in Fig. 2.3 shows that the integer values larger than
= 16-bit machine. However, when they are qualified as long integer

values are correctly stored.

Program
main()
printf("Integer values\n\n");
printf("%d %d %d\n", 32767,32767+1,32767+10) ;
printf("\n");
printf("Long integer values\n\n");
| printf("%1d %1d %1d\n", 32767L,32767L+1L,32767L+10L);
Output

Integer values
32767 -32768 -32759

Long integer values
32767 32768 32777

Fig. 2,3 Kepresentation of integer constants on |6-bit machine

Real Consténts,

I{lteger num.l?ers are inadequate to represent quantities that vary continuously, such as
numbers containing fractional parts like 17.548. Such numbers are called real (or floatino
i =]

point) constants. Further examples of real constants are:

- closed within a pair of single quote

28 l»—»~:—»~.*_ﬂ_.u_, s

0.0083 -0.75 435.36 +247.0 -
‘ i followed by a
i mal tion, having a whole number .
, numbers are shown in decimal notation, ng a il orint o
de::f:fp?;:ﬂ and the fractional part. It is possible to omit digits before the decimal p
dig{ts after the decimal point. That is,
215, 95 71 +.5

are all valid real numbers. . _ o ‘

A real number may also be expressed in exponential (or scientifi }C) notation. For e;‘?I?Plk)e,
] ‘ \ ;l‘u 215.65 m'l\.' be written as 2.1665¢2 in exponential notation. e2 means multiply by
e vi © 410,00) v (e X\ .

107, The general form is:
mantissa e.exponent .. -

The mantissa is either a real number expressed in dec%mal nptatwn or an integer. T}tle exp}(l;-
nent is an integer number with an optional plus or minus sign. The letter e separating the
mantissa and the exponent can be written in either lowercase or uppercase. Since the €xpo-
nent causes the decimal point to “float”, this notation is said to represent a real number in
floating point form. Examples of legal floating-point constants are:

0.65¢4- 12e-2. 1.5¢+5 3.18E3 -1.2E-1

Embedded white space is not allowed. .

Exponential notation is useful for representing numbers that are either very large or very
small in magnitude. For example, 7500000000 may be written as 7.5E9 or 75ES. Similarly, -
0.000000368 is equivalent o —3.68E-7. : - -

Floating-point constants are normally represented as double-precision quantities. How-
ever, the suffixes f or F may be used to force single-precision and 1 or L to extend double
precision further. ‘

I

Some examples of valid and invalid numeric constants are given in Table 2.4.

Table 2.4 Examples of Numeric Constants

Constant—_ 5007 3T Ay
698354L Yes Represents long integer
25,000 : No Comma is not allowed -
+5.0E3 , Yes (ANSI C supports unary plus)
3.5¢-5 - . Yes . '

7.1e4 No v | - No white space is permitted
-4.5¢-2 Yes '

1.5E+2.5 No Exponent must be an integey
$25% - No $ symbol is not permitted
0X7:3 ' Yes

Hexadecimal integer

Single Character Constants
A single character constant (or simply character constant) contains a single character en- |
marks. Example of character constants are:

‘5‘) ‘X’ €9 6 9.

)

“ the number 5. The last ¢onstant'is

Note that the character constant ‘5’ is not the same as

a blank space. CII values. For exarnpl

e, the state-
Character constants have integer values known as AS

ment i tf("”d" 1a|).
, prin xd", ; . tement
would print the number 97, the ASCII value of the letter a. Similarly, th? sta
printf("%c", '97'); -ven in App mdix II.
would output the letter a’. ASCII values for all characters are given in pp‘ "ble to perform
Since each character constant represents an integer value, 1t 1s also posi1

arithmetic operations on character constants, They are discussed 1n Chapter 8.

a

String Constants B

A string constant is a sequence of characters enclosed in double quotés. The characters may
be letters, numbers, special characters and blank space. Examples are: '

Remember that a character constant (e.g., X’) is not equivalent to the single character

-string constant (e.g., “X”). Further, a single character string constant does not havej an

equivalent integer value while a character constant has an integer value. Character str%ngs

. are often used in programs to build meaningful programs. Manipulation of character strings
are considered in detail in Chapter 8. - |

Backslash Character Constants

C supports some special backslash character constants that are used in output functidns. For
example, the symbocl ‘\n’ stands for newline character. A list of such backslash character
constants is given in Table 2.5. Note that each one of them represents one character, al-
*hough they consist of two characters. These characters combinations are known as escape

sequences.

Tabie 2.5 'Backslasi\ Cha‘ract.er Constants

“a’ L audible alert (bell)
v ' _ | | back space

“f - : . - form feed

“n’ ' ' new line

w _ carriage return
“t’ horizontal tab
A\ o , vertical tab

v single quote
\” double quote
o question mark
A\¥ ' : A ‘ backslash -

v 3 ol

Bl o
| —

ARGk !

30}/

VARIABLES
e

value. Unlike constants that
le may take different values -
les. For instance,
the end f

A variable is a data name that may be used to store a data
remain unchanged during the execution of a program, a variab .
at different times during execution. In Chapter 1, we used geveral variab
we used the variable amount in Sample Program 3 to store the value of money at
each year (after adding the interest earned during that year).

A variable name can be chosen by the programmer in a meanin
function or natnre in the program. Some examples of such names arée.

gful way so as to reflect its

Average
“height -

Total -

Counter_1
cclass_strength

As mentioned earlier, variable names may consist of letters, digits, an

character, subject to the following conditions: | |
1. They must begin with a letter) Some systems permit underscore as the first character.
. -However, length should not be

2. ANSI standard recognizes a fength of 31 characters.
normally more than eight characters, since only the first eight characters are treated

as significant by many compilers. (In C99, at least 63 ch'ara_cters‘ar.e significant.) |
Uppercase and lowercase are significant. That is, the varible Total is not the same as

d the underscore(_)

3.
total or TOTAL. . ' ; N I . .
4. It should not be a keyword. (/iy! ’ ‘“!"*g'ei’ 2”!32 » /’ @é@ﬂ, 3% , eyy'ff;g \
5. White space is not allowed. | Qh“’ﬂ) | ' o 4
Some examples of valid variable names are: - A o
John , Value T raise
Delhi x1 - ph_value
_mark suml distance
Invalid examples include: - .
" 123 . - (area)
B/ 25th
- P

Further examples of variable names and their correétness are given in Table 2.6.

Table 2.6 Examples of Variable Names

- Variablename
First tag | . Valid
char ' Notvalid ~ charisa keyword
Price$: Not valid Dollar sign isillegal |
group-one Not valid - . Blank space is not permitted
average_number - Valid First eight characters are significant

~int_type . ~ Valid . i Keyword may be part of a name

____*_.-_,_,—'__13‘1

nd Daca Types

If only the first eight characters are rec ognized by a compiler; then the two names
average_height 74

average V*voight

mean the same thing to the computer. Such names can be rewritten as

avg height and avg_weight

o

or
ht_average and wt_avera

without changing their meanings.

27 DATA TYPES
anguage is rich in its data types. Storage representatlons and machine instructions te

Cl
handle constants differ from machine to machine. The variety of data types available allow
the programmer to select the type appropriate to the needs of the application as well as the

machine.
ANSI C supports three classes of data types:
1. Primary (or fundamental) data types =

. Derived data types

3. User-defined data types
The primary data types and their extensions are diééussed in this section. The user-de-

“ned data types are defined in the next section while the derived data types such as arrays,
structures and pointers are dlscussed as and when they are encountered.

f unctions,

All C compilers support five fundamental data types, namely integer (int), character
‘char), floating point (float), double-precision floating point (double) and void. Many of
them also offer extended data types such as long int and long double. Various data types
and the terminology used to describe them are given in Fig. 2.4. The range of the basic four

types are given in Table 2.7. We discuss briefly each one of them in this section

NOTE C99 adds thr.oe more data types, namely Bool “om
Appendlx “099 I‘Ldtur(,b 2wt ,/”‘,,’, AR e *

JLr

Character >

‘|'char
signed char

N S nsigned type
[t unsigned int

. f ||p5if}!",’_)(! char
short i unsigned short int i || .

long int unsigned long int

=SRANREEQ)

-1281t0 127
nt -32,76810 32,767
float 3.4e-38t0 3.4e+e38

double : "~ 1.7e-308 to 1.7e+308

Integer Types

Integers are whole numbers with a range of values supported by a particular machine. Gen:"
erally, integers occupy one werd of storage, and since the word sizes of machines vary (typi-
cally, 16 or 32 bits) the size of an integer that can be stored depends on the computer. If we
usea 14 hif,l,gvord length, the size of the integer value is limited to the range -32768 to +32767
(that is, -2" to +2'°-1). A signed integer uses one bit for sign and 15 bits for the magnitude

of the number. Similarly, a 3% bit word length can store .)
’ - an int]
2,147,483,648 to 2,147,483,647. 4 mnteger ranging from

In order to provide some control over the ran
classes of integer storage, namely short int,
signed forms. ANSI C defines these types so th
the largest, as shown in Fig. 2.5. For exampl]
values and requires half the amount of storage

ge of numbers and storage space, C has three
int, and long int, in both signed and un-
at they can be organized from the smallest to
e, short int represents fairly small integer
as a regular int number uses. Unlike signed

~N

. X \(
¢ oA YAr Ity A 1At Typot \‘ b

i and are al
e bite for Che magnitade of fhe b r} nr b bev;aYS
Chite o v . ' UL T
| ‘l ;‘ o, the range of anedgned integer numb om
e the -

nt,..mm‘ ‘
Wi

' TR)

1l H'
al intogeris
g nn"ll’.“"'
intogers,

Vvl
Therelore, Tor TN
pnmln'v

” “' “r|.."|."l"

Fig, $0 Intoger typos

) (4 Al i

. ~lues. The use of quali-

becbare Tomg aind wansbgnvedd indegora Lo inerenre the range of v lues Syt nu(;lnbe

e declane) dny e 'H a8l T.

" " ‘ { PO e \\\(\s\\\‘\l Bevanine he dotault tiaclaration assumes a ql %h Ir si d

for signed onmtapei i apiy iers and their size an

o ; l : 8 ahow sl the allowed vombinations of hasie typer nnd qualifiers an

FRDIe & N BN E all 1

i W A\
pange on g [0l N

x "C09 Features”. Ciatorng
NOTE: EREUEHETEE TR T hiege Ly pen Roo the l\l..\l)(‘ll(h‘(O 8.

Table 2.8 Nze and Range of Data Types on a | 6-bit Machine

Nze (3\"{:‘_;\'\)‘ o Range
char or stgned chay N 12810 127
unsigned l\‘h;u N 0to 255 |
' ! int o . ~-32,768 to 32,767
it or signed (n : .
ansigned int lo 010 65535
short it o
wgned short 1nt N ! -128t0 127
R 010253
signed long 1 3Ny ~2,147.483,648 10 2,147,483 ,647
signed lon R 0104,294,967,295
32 34E-381034E+38
L aa . Q I
double o4 1.78-308 to 1.7E + 308
long doubic 80 34E-493210 1.1E + 4932
Hoaling Point Tyvpes
T loaung point (or real) numbers are stored in 32 bits (on all 16 bit and 32 bit machines), with
© digits of precision. Floating point numbers are de ined in C by the keyword float. When
W€ accuracy provided by a float number 1S 1

10t suf icient, the type double can be used to
ber uses 64 bits giving a precision of 14 digits.
rs. Remember that double type represents the

X
L At s gwn b
QCiine e Tumber

A double data tvpe num
1hese are known as doyble precision numbe

same dz ,\ :
S3Ime dala iype that float represents, but wi

P th a greater precision. To extend the precision
TUMET, We may e l;mg double which uses & bits. The relationship among floating types
B lusraisd in Fig 26

J"f'

void Types

The void type has no values. This is usually used to specify the type of functions. The type of
4 function is said to be void when it does not return any value to the calling function. It can
also play the role of a generic type, meaning that it can represent any of the other standard

types.

Character Types
A single character can be defined as a character(char) type data. Characters are usually
stored in 8 bits (one byte) of internal storage. The qualifier signed or unsigned may be

explicitly applied to char. While unsigned chars have values between 0 and 255, signed

chars have values from —128 to 127.

2.8 DECLARATION OF VARIABLES /

After designing suitable variable names, we must declare them to the compiler. Declaration

does two things:
1. It telis the compiler what the variable name is.

2. 1t specifies what type of data the variable will hold.
The declaration of variables must be done before they are used in the program.

Primary Type Declaration

2 X iz

A variable can be used to store a value of any data type. That is, the name has nothing to do
with its type. The syntax for declaring a variable is as follows:.

v1,vZ, ...vn are the names of variables. Variables are separated by commas. A declaration
statement must end with a semicolon. For example, valid declarations are:
int cou t; :
int number, total;
double ratio;

int and double are the keywords to represent integer type and real type data values respec—
tively. Table 2.9 shows various data types and their keyword equivalents.

!

ta Types-a

(0

nd Their Keywords

e

T

Unsigned character
Signed character
Signed integer
Signed short integer

Signed long integer

Unsigned integer
Unsigned short integer

Unsigned long integer
Floating point

Double-precision
floating point

Extended double-precision

-

floating point

char

oA e

unsigned char \
signgd char UG el
signed int (or int)

signed short int

(or short int or short)
signed long int

(orlong int or long)
unsigned int (or unsigned)
unsigned short int

(or unsigned short)
unsigned long int

(or unsigned long)

float

double

long double

The program segment given in Fi

. .

beginning of the program. The open
ration of variables is usually done i
variables can also be declared outsi
tance of place of declaration will be

mmediately

g. 2.7 illustrates'deqlaration of variables. main() is the
ing brace { signals the execution of the program. Decla-
after the opening brace of the program. The

de (either before or after) the main function. The impor-
dealt in detail later while discussing functions.

Note: C99 permits declaration of variables at any point within a function or blo_ck,’prior to their use.

float X, Y3

int code;
short int count;
long int amount;
double deviatijon;
unsigned n;

char C;

[COMPUEAETON. o\ e o i

main() /*.........Program Name....... .

VA PR S

.....Declaration......

..........

%

B] S

ﬂb&%%&%ﬁgMAﬁmc

When an adjectiye
Specifier, compile
as unsigned, the

alifior . e

I :qndlhg”)1Rh‘)rt’ long, or unsigned is used without a basic datait:g’e V4
S reat the at . o artor var ,2_’7
i e data fypu A8 AN Int. If we want, Lo declare a character %
we must do so using both the terms like unsigned char. <
T

—_— T

Defatﬂtf‘vawlues of Constants -
. o 1 "“’—T

:mt‘gpr constants, by default, represent in type data. We an override this default
I\ ¢ \ " Y N " X 3 -
Y speditying unsigned o long after the number (by appending U or L) as shown |

I S AR R
I e

| , befow:
l,ilv]ml Type Value
+111 int 111
——222 int -222
45678U unsigned int 45,678
~-56789L long int -56,789
987654 UL unsigned long int 9,87,654

Similarly, floating point constants, by default represent double type data. If we
want the resulting data type to be float or long double, we must append the ietter f
or F to the number for float and letter | or L for long double as shown below:

| Literal Type Value
0. double 0.0
.C double 0.0
12.0 - double 12.0
1.234 double : 1.234
-1.2f float : -1.2
1.23456789

1.23456789L long double

S

e v e .

| S—

User-Defined Type Declaration

C supports a feature known as “type definition” that allows users to define an identifier that
would represent an existing data type. The user-defined data type identifier can later be -

used to declare variables . It takes the general form:

edef type i
Where type refers to an existing data type and “identifier” refers to the “new” name given to
the data type. The existing data type may belong to any class of type, including the user-

defined ones. Remember that the new type is ‘new only in name, but not the data type.

typedef cannot create a new type. Some examples c f type definition are;
typedef int uni:s;
typedef float marks;

Here, units symbolizes int and marks symbolizes float. They can be later used to declare
variables as follows: ' : ,

entifier; -

units batchl, batch2;
marks name1[50], name2[50];

__ Programmihig in ANSI C

|
l double l
' | long double b

Fig. 2.6 Floating-point types

Void Types

The void type has no value .
4 function is said to be void when it does not

also play the role of a generic type, meaning
types. ‘

s. This is usually used to specify the type of functions. The type of
return any value to the calling function. It can

that it can represent any of the other standard

Character Types

A single character can be defined as
<tored in 8 bits (one byte) of internal storage. Th
explicitly applied to char. While unsigned chars
chars have values from -128 to 127. ’

a character(char) type data. Characters are usually
e qualifier signed or unsigned may be
have values between 0 and 255, signed

2.8/ DECLARATION OF VARIABLES / |
e

After designing suitable variablé dames, we must declare them to the compiler. Declaration

does two things:
1. Tt tells the compiler what the variable name is.

9. Tt specifies what type of data the variable will hold.
he declaration of variables must be done before they are used in the program.

Primary Type Declaration

A'var'iable can be used to store a value of any data type. That is, the name has nothing do
with its type. The syntax for declaring a variable is as follows:.

R Teetl L s .J\.n,w%‘

:tlétﬂ, :n are the names of variables. Variables are separated by commas. A declaratiop
ement must end with a semicolon. For example, valid declarations are:

Lo Y {

int count;
int number, totatl;
double ratio;

lnt and double are the key'words to represent integer type and real type data values respec-
tively. Table 2.9 shows variong 432 fypes and their keyword equivalents.

e

———e ;‘QOnstaf‘\ts. Variables, and Data Types - —_— «l 35

Table 2.9 Data Types and Their Keywords

Datanpe . i\ Keyword equivalent
Charactet char
/ L\Ynsxgncd character uhsigncd char NM\
\ A Signed character signedchar | g¢ O
= U ™\ Signed integer signed int (or int)
Signed short integer signed short int e
(or short int or short) \‘“ —
Signed long integer signed long int '
(orlongintorlong)
Unsigned integer unsigned int (or unsigned)
Unsigned short integer unsigned short int
(or unsigned short)
Unsigned long integer unsigned long int
(or unsigned long)
Floating point float
Double-precision
floating point dcuble
Extended double-precision
floating point ’ long double

The program segment given in Fig. 2.7 illustrates declaration of variables. main() is the
beginning of the program. The opening brace { signals the execution of the program. Decla-
ration of variables is usually done immediately after the opening brace of the program. The

variables can also be declared outside (either before or after) the main function. The impor-
tance of place of declaration will be dealt in detail later while discussing functions.

Note: C99 permits declaration of variables at any point Within a function or block, prior to their use.

main() /*.........Program Name.........oovvvvnnn... cen ¥/

[¥eveiiiinnnDeclaration. Y
float Xy, Y3
int code;
short int count;
long int amount;

double deviation;
A unsigned n;
4 char C;

/*OO.".O'olo'ltocomput?“.’;"“---‘7'1010'01100-

veevas ¥

s ends

R R AR

5

Decision Ma. ir.g
and Branching

51 INTRODUCTION

We have seen that a C program is a set of statements which are normally executed
sequentially in the order in which they appear. This happens when no options or no
repetitions of certain calculations are necessary. However, it practice, we have a number of
situations where we may have to change the order of execution of statements based on
certain conditions, or repeat a group of statements until certain specified conditions are met.
This involves a kind of decisionnmaking to see whether a particular condition has occurred or
not and then direct the comphxter to execute certain statements accordingly.

C language possesses such decision-making capabilities by supporting the following

statements:
1. if statement

2. switch statement

3. Conditional operator statement

4. goto statement :

These statements are popularly known as decision-making stalemenis. Since thes <o
ments ‘control’ the flow of execution, they are also known as control statements.

We have already used some of these statements in the earlier examples. Here. we shall

discuss their features, capabilities and applications in more detail.

[5.2) DECISION MAKING WITH IF STATEMENT

The if statement 15 a powerful decision-making siatement and is vaed to contro! the fow of

execution of ststements It s basically o wo vway docision s nt and & ceed
cariunction vtk e exprossion. It takes the folo ving for:
’f f%’.ﬂs! RS, .-gf-,',g','[i'n.! |

It allows the computer to evaluate the (!xpli‘(..r;»:.‘si.()f'l first. and then, Jdopending oo whethor
(relation or condition) is ‘true’ (or non-zero) or ‘false’ (zero), it

the value of the expression

N
’ - : —— ""\ ' &
Decision Making and Branching / § S
' “\
o qment. This point of Program has twy ny® P
ol to a particular statement. This ‘pomm‘ 0l 'cguf;n m s ,‘}?HNW 3
transfers the contre L and the other for the false €0 iR
Tow ane for the frae cone 1ton
TOW, ne | [“"\‘
1
False /‘
i
t True

Fig. 5.1 Two-way branching

Some examples of decision making, using if statements are:

1. if (bank balance is zero)
borrow money
2. if {room is dark)
put on lights
3. if (codeis 1)
person is male
if (age is more than 55)
person is retired
The if statement may be implemented in different forms
conditions to be tested. The different forms are:

1. Simple if statement

>

depending on the complexity of

2. if.....else statement
2. Nee7if Lelse statoent
S e

RS SUeoseadn s b oem L Ule next ow soctions,

|5.3] SIMPLE | F STATEMENT

The general form of a simple if statement is
if (test expression)

{.
- statement-block; \/\
P
. statement-xy
The ‘statericct-bloch’ may be a single statement or a group of statements. If the test ex-
be executed, otherwise the statement-block will be

£l

RSSO ib W'y % i;h(-) slatemen ")L‘()(""' Wi
"1 ,, ".;vd ’\ AT DO § 44, Lh) !y d + A t R 1 ;1 I t
RIPHCC 800 cne execution v UE jump o the scalenment-x. emembey_ ITAAN FARA Anv AR AT T A

115}~~ e ———— Pigramming in ANSI C

true both the statement-block and the statement-x

rated 1n F‘ig. 5.9,

are executed in sequence. Thig iy, il

True

1

[~éiétément-bloc§%

1

owchart of simple if control
Consider the following segment of a program that is written for processing of marks ob-

tained in an entrance examination. 5

-

s e v v o oo ’\“‘

» ; | .
if (categom(SPOR'TS) . %h%"’f{\\ ,
o _ >
f marks = marks + bonus’marks; g Qr’ dv“‘r‘@

| |
printf("%f", marks);

teeenne ' . <‘>

The program tests the type of category of the student. If the student belongs to the

SPORTS category, then additional bonus_marks are added to his marks before they are
pnnted For others, bonus_marks are not added.’

U The program in Fig. 5.3 reads four values a, b, ¢, and d from the terminal

and evaluates the ratio of (a+b) to (c-d) and prints the result, if
c-d is not equal to zero.

The program given in Fig. 5.3 has been run for two sets of data to see that the paths function
properly. The result of the first run is printed as,

Ratio = -3.181R18

./ f — Decision Making and Branching

Program
main()
{
int a, b, ¢, &;

float ratiog

printf("Enter four integer values\n");
ccanf("%d %d ¥d %d", %a, &b, &c, &d);

if (c-d 1= 0) /* Execute statement block */

{
ratio = (float)(a+b)/(float)(c-d);

printf("Ratio = %f\n", ratio);

J
Output

Enter four integer values
12 23 34 45
Ratio = -3.181818

Enter four integer values
12 23 34 34

SSRGS
STAR & DET TR

 'Fig. 5.3- Hllustration of simple if statement

The second run has neither produced any results nor any message. During the second
run, the value of (c—d) is equal to zero and therefore, the statements contained in the
statement-block are skipped. Since no other statement follows the statement-block, program
stops without producing any output.

N ote the use of float conversion in the statement evaluating the ratio. This is necessary
L avoid truncation due to integer division, Remember, the output of the first r .n -3.181818
i printed correct to six decimal places. The a....... wu.atains a round off error. If we wish to
have higher accuracy, we must use double or long double data type.

The simple if is often used for counting purposes. The Example 5.2 illustrates this.

Example 5.2
ample 5.2/ The program in Fig. 5.4 counts the number of boys whose weight is less
than 50 kg and height Is greater than 170 cm.

| Th'e Program has to test two
using the compound relation

conditions, one for weight and another for height. This is done

if (weight < 50 && height > 170)

et

— Pro ming in ANSIC —
118 — g

This would have been equivalently done using two if statements as follows:
if (weight < 50)
if (height > 170)
count = count +1;

" ‘ A% 0 ' ‘h in
| . went s executed. whic
rainht ia 50, then the following statenicn . o aater
value of weight is less than 50, : - ht is greater
tumlfti}:eanother if statement. This if statement tests height and if the heig '

than 170, then the count is incremented by 1.

Program
main()

|

int count, i;
float weight, height;

count = 0; -
printf("Enter weight and height for 10 boys\n");

for (i =1; i <= 10; j+4)

{
scanf("%f %7, &weight, &height) ;
if (weight < 50 && height > 170)
count = count + 1;
J

printf("Number of boys with weight < 50 kg\n");
N printf("and height > 170 cp = %d\n", count);

& }
Output

Enter weight and height for 10 boys
45 176.5
55 174.2
47 168.0
49 170.7
54 169.0
53 " 170.5
49 167.0
48 175.0
47 167
51 170

Number of boys with neight « 5¢
and height > 176 ¢y 3

T e D LN

TR . LT s A0 o oK ey

| o SR

g s

‘#’M__M“M.-n - ‘:\pp‘\';nn Ne Hnrn.a.r.w’c pu‘o

e i

where the
1wl ‘.’\":’ }i “‘l("rf"‘."-ll')n "kp
dalaal)rl'\’ﬂﬂﬂd fh,}ﬂ

daemantc W offen come across A sifyation

Wik le dex ,en‘fw e
LAY)

GOVT peron AP0

(e foue Y ¢ Y wavd paxy o 'f'”" “"'! \
e a4 De Margan s rule 10

fragrne A
A Mo

eAtf 14 X

; ! ‘
pa " ‘ ‘
nwy
i (
e thye v appiving the NOT operator tn overy logical expres
N IR g \ N , ‘ '
‘ a “!L"}‘r ;\h' PP ng "\(* ,ﬁ‘a"nna: x“wﬁf‘%"'.!‘:

ha! ©

y hecomet 'y
'y hacomes y

A& hecomes |

hocomet & & .

\ ,\‘}\ \) W ()MeE - ¥ l. l& ('

x < =0 || 'condition) becomes X >0&& condition %

v if._else statement is an extension of the simple if statement. The general form 8

1§ ‘tect expression)

True-block statement(s)

¢ |
else | /

o

#

¢ i : o4 . » §

- glve Liock statement(s)

i rf’[
‘H L provrpeecd bty totluvw 1 (

U\ il A : i gnd, M U Pl B sEQLeR b s g i,‘X&'CULL'd, i l‘l[h(i‘r cast,
crther e ok OF T frii0E Wi AT § b(}[}; I‘h{: i ,-E_uﬁtrat_ed mn l“lg. 0‘5. In

botL e cases, the contro] is transierred subsequetly to the statement-x,

=0

" | ,/61——/ : —— Programmi g i ANSI C

/

Mhis would have been equivalently done using two if statements as follows
if (weight < 50)
if (height > 170)
count = count +1;

If the value of weight is less than 50, then the following statement is executed, which in

turn is another if statement. This if statement tests height and if the height is greater
than 170, then the count is incremented by 1.

-

Program \

main() |

{ ;
int count, i;

float weight, height;

3 count = 0;
printf("Enter weight and height for 10 boys\n");

% for (i =1; i <= 10; i++)
5 {
scanf("%f %", &weight, &height);
if (weight < 50 && height > 170)
count = count + 1;
}

printf("Number of boys with weight < 5C kg\n");
. printf("and height > 17¢ cm = %d\n", count);

Z | | 5
ﬁ. Output
gé Enter weight and height for 10 boys
& 45 176.5
7 55 174.2
g 47 168.0
49 170.7
7 54 169.0
| 53 170.5
49 167.0
48 175.0
47 167
51 170

Number of boys with weight < 50 kg

. J2119

———— Declsion Making and Branching —

Applying De Morgan’s Rule

[While designing decision statements, we often come across a situation vyhere t.he
logical NOT operator is applied to a compound logical expression, like
& &y | |12). However, a positive logic is always easy to read and comprehend than
a negative logic. In such cases, we may apply what is known as De Morgan’s rule to
make the total expression positive. This rule is as follows:

*Remove the parentheses by applying the NOT operator to every logical expres-
sion component, while complementing the relational operators”

‘ That is,
| ! X becomes Ix
‘ Ix becomes x
| && becomes | |
|| becomes &&
Examples:
I(x && y || !z) becomes Ix || ly && z

(x <=0 || !condition) becomes x >0&8& condition

———

54] THEIF....ELSE STATEMENT

The if...else statement is an extension of the simple if statement. The geperal form is

If (test expression) .

{ |

J True-block étatement(s)

e else /
‘False-block statement(s)

! }

statement -x

it R T T

f o IR T U e
A e ey A'-‘l':l{"fdr‘lt‘, -

R ARG O L A M Ui S e
LGRS LA T AR

If o o
the test expression is true, then the true-block statement(s), immediately following the if

\‘t' t- 0 *

;i:hz;nf:f: g;:c:x::‘;:fd, gghekrwmﬁ, l’:he false-block statement(s) are executed. In either case,
| v8¢-0lock will be execut . This is i in Fi

both the cases, the cannol o £ uted, not both. This is illustrated in Fig. 5.5. In

ansferred subsequently to the statement-x.

b | Programming in ANSI C

Entry
t

tast False

OXPTOtRION]
|
A |
|
|

[|
> statement ~ F /
e PR e

Troe

!
Troe-bhoek

statement

Y

Fig. 5.5 Flowchart of if.....else control

Let us consider an example of counting the number of boys and girls in a class. We use
code 1 for a boy and 2 for a girl. The program statement to do this may be written as follows:

)

L

K T &
i . 1f (code == 1) _ ‘
A8 boy = boy + 13 . fy)(
A A ;

|
" if (rode == 2)
o girl = girl+l; ﬁ\
f ' :
S TP PRIRS
Li RN T esae T ' .‘ .«...’.. . . R R RR A0 g AR e e L
The first test determines whether or not the student is a boy. If yes, the number of boys is

increased by 1 and the program continues to the second test. The second test again deter-

mines whether the student is a girl. This is unnecessary. Once a student is identified as a
boy, there is no need to test again for a girl. A student can be either a boy or a girl, not both.

The above program segment can be modified using the else clause as follows:

[“o s ey s [P T
] ?
| if (code == 1)- | ,f\
’ boy = boy + I; -
else i
girl « gl +1; |
XXXXXXXXXX ;

LI B I I L R)

ST K B ¢ T R e i s A R W TR
IR R Soara o O L AEROAR ',"lf"‘,__-':-l) OIS, VTR &4
* YTy SR AN N O T

Decision Making and Brancning Ly
. v
Here. if the code is equal 10 1. the statement boy = hoy + 1118 pxeruted and the pn,

1 skipping the elae part, It the code 18 not €Qua, ~—

xxxx, afle
transferred to the statement XXX , l t 2 ‘ »
n the else part girl = g
1 the statement boy = hoy 4 1.1¢ gkipped and the etatement part g gin |
1 iz executed before the control ronches the astatoment XXXXXXXX. o
bii‘ inq der the program goen m Fig 53 When the value (c d) 1a zoro, the ratio 18 not
oneder POGTRTT 1"
wﬂn(’ anil the (roTe ctove w1 hon! any meseage h\ '4\1(}\ raeed wWe ;ngy not know
CeICuiaNna a2l q : 1

' Al @ y or Thisa program can be
whe har the program stopped dur 1o a rero value or gome of her error Thi progr

improved by adding the elee clanee as follows

A e

4 ratio = (float)(a*b)/(float)(c-d);
s Prin{k!("gat4(_\ - *(\n“. rat"O);

.
~ "
ot s zerc\nt);
7:' ------ R
A
b

“Example 5.3 A progrom fo evaluate the power series

2 3 n

e’ = +x+n)5-+—’-(—+...+x—l-,0<x<1
n!

2 3!
is given in Fig. 5.6. It uses if......else to test the accuracy.
The power series contains the recurrence relationship of the type

T,-T,., (}—\‘ forn> |

" i’
T, =xforn=1
To=1

I 7, . ‘usually known as previous term) is known, then T, (known as present term) can be
easily found by multiplying the previous term by x/n. Then

P Ogi £

Coocount; ‘
A, terin, Sum;
printf(*freter value of x:");

e e o "‘
£ pod JHO B VAN
D(.an\ G i)y

e Pragramming in ANSIC - —
21

= n = term = sum = count = J;

while (n <= 100)

{
term = term * x/n;
sum = sum + term;
count = count + 1;
if (term < ACCURACY)

n = 999.
else
n=nt+1l;

}

printf("Terms = %d Sum = %f\n", count, sum);
}

Output
Enter value of x:0
Terms = 2 Sum = 1.000000

Enter value of x:0.1
Terms = 5 Sum = 1.105171

Enter value of x:0.5
Terms = 7 Sum = 1.648720

Enter value of x:0.75
3 Terms = 8 Sum = 2.116997

Enter value of x:0.99
Term;\é 9 Sum = 2.691232

Enter value of x:1
Terms = 9 Sum = 2,718279

The program uses count to count the number of terms added. The program stops when

the value of the term is less than 0,0001 (ACCURACY)..Note that when a term is less than

ACCURACY, the value of n is set equal to 999 (amumberhigher than 100) and therefore the
while loop terminates. The results are printed outside the while loop.

5.5 NESTING OF IF...ELSE STATEMENTS

When a series of decisions are involved, we may have to use more than one if...else
statement in nested form |

o a@ form as shown below: .
be e logic of execut.wfx 18 illustr_ated in Fig. 5.7. If the condition-1 is false, the statement-3 will
executed; otherwise it continues to perform the second test. If the condition-2 is true, the

{123
—— Decision Making and Branching — |

It (test condition. 1)

(

! statement -1:

}

; else

<{ if (test condition-2);

- {
\‘ statement -2:
]

g statement -3;

statement -x; «- —

statement-1 will be evaluated; otherwise the statement-2 will be evaluated and then the
control s transferred to the statement-x.

atement-t {

el | rragramning in ANSIE G

if (code !- 1)
if (code 1= ?)
if (code 1- 3)

colour "YEL O ;
else
colour "WHITE
else
colour = "GREEN";
else

colour = "Rgp";

}nsud1sﬂuaﬁon&thechowelshﬂltothelnngrannnenlqowevenin(ndertochoo&%anif
structure that is both effective and efficient, it is important that the programmer is fully
aware of the various forms of an if statement and the ruleg governing their nesting.

Example 5.5 An electric power distribution company charges its domestic consurners

" s follows:
Consumption Units Rate of Charge
0-200 Rs. 0.50 per unit
201 - 400 [s. 100 plus Rs. 0.65 per unit excess of 200
401 - 600 Rs. 230 plus Rs, 0.80 per unit excess of 400
601 and above s. 390 plus Rs. 1.00 per unit excess of 600

The program in Fig. 5.10 reads the customer number and power consumed and prints
*he amount to be paid by the customer.

Proger‘
main()

{

int units, custnum;

float charges;

printf("Enter CUSTOMER NO. and UNITS consumed\n");

scanf("%d %d", &custnum, &units);

if (unjts <= 200) |

charges = 0.5 * units;
else if (units <= 400)
charges = 100 + 0.65 * (units - £00):

else if (units <= 600) |
charges = 230 + 0.8 ™ (Loits - 400): |

: ch;;ges = 390 + (univs - 60«2,\ “ |

printf("\n\nCustomer No: %d: Charyes = ©.omnw, /

custnum, charges): |
Output £ j

Fter CUSTOMER NO. .:d UNITS consumed 101 130

ikt G S e

A T R s e

_ Decision Mak ng and Branching T TTT—— ™

customer Koil01 Cnargey - 1300
Cooer CUSTUML R ONO, and UNITS consumed 202 229

"}l,)'(\v]]6.?5

comer 1207

cop (UL MER NDL and UNTTS consumed 303 375

503 Charges = 213.75

Castomer Not.
Unter CUSTOMER NO. and UNITS consumed 404 520
Customer No:404 Charges - 326.00

Enter CUSTOMER NO. and UNITS consumed 505 625
Customer No:505 Charges = 415.00

S—————— e e

Fig. 5.10 Illlustration of else..if ladder

Rules for Indentation

| When using control structures, a statement often controls many other statements
| that follow it. In such situations it is a good practice to use indentation to show that
| the indented statements are dependent on the preceding controlling statement.
1 Some guidelines that could be followed while using indentation are listed below:

¢ Indent statements that are dependent on the previous statements; provide
at least three spaces of indentation.

o Align vertically else clause with their matching if clause.

. Use braces on separate lines 20 identify a block of statements.

|
|
|

¢ Indetthe oements nothe block by at least three spaces to the right of the
braces.

o« Align the opening and closing braces.
1 s Use appropriate comments to signify the beginning and end of blocks.

o Indent the nested statements as per the above rules.

s Code only one clause or statement on each line.

LA DNV s DA TEMENT

We have seen that when one of the many alternatives is to be selected, we can use an if
statement to control the selection, However, the complexity of such a program increases
dramatically when the number of alternatives increases. The program becomes difficult to
read and follow. At times, it may confuse even the person who designed it. Fortunately, C

has a built-in multiway decision statement known as a switch, The switch statement tests

'/30' weagramming in ANSE C R
/

,1\

the value of a H,\-pn variable (or c-xprmmun‘; ng:nn.««t a hat of case values and when a match

i< found. a hlock of statements associated with that eage is executed The general form of the

switch statement 1& ag shown below

ewitch (expregeiog

case value-]:
block-]
break;
case value-2:
block-2
! break;

default:
default-block
break;
|
" statement-x; J
Bl L R B T S TR T Y T e

The expression is an integer expression or characters. Value-1, value-2 are constants or
constant expressions (evaluable to an integral constant) and are known as case labels. Each
of these values should be unique within a switch statement. block-1, block-2 ... are
statement lists and may contain zero or more statements. There is no need to put braces
around these blocks. Note that case labels end with a colon ().

ann the switch is executed, the value of the expression is successfully compared against
‘e values value-1, value-2,\. If a case is found whose value matches with the value of the
cxpression, then the block of statements that follows the case are executed.

The break statement at the end of each block signals the end of a particular case and
causet an exit from the switch statement, transferring the control to the statement-x
following the switch,

The d“"“u is an optional case. When present, it will be executed if the value of the
€*pression does not match with any of the case values. If not present, no action takes place if

all matches fail and the control g o
a8 257 case labels) 0l goes to th} statement.x. (ANSI C permits the use of as many
The selection

Fig. 5.11 process of switch statement is illustrated in the flow chart shown in

f rtry
L 3 0’!‘(» .
., eYpre &Q/m:fy‘
\.\\ﬂ p
f ypraetans A !
'
Exprossion = vON@ 2 noewr b
),.
:/, '
‘\4/ no match) default Jofault > >/
— ik
B— !

Fig. 5.11 Selection process of the switch state

~.. switch statement can be used to grade the
Thais 18 1llustrated below:

L 4

ment

students as discusse

A
. X index = m;tks/lo - 0\

' switch (index)
{ \
case 10:
case 9:
case 8;
grade
break;
case 7:
case b;
grade

break; -

case 5
grade
break;

case §;
grade
break;

default:
grade
break;

]

}
printf(“ss\n”,

o

“Honours";

“First Division";
“Second Division";
“Third Division™;
“Fail';

grade);

statement-« ?iv

d in the last section

132},~._..,~.,,,,A.,,_w

e Programming in ANSI C

Note that we have used a conversion statement

where. index 1s defined as an integer. The varia' indes akes ti
Marks Index
100 10
90 - 99 9
80 - 89 8
70 - 79 7
60 69 6
50 - 569 .)
40 - 49 4
0 0

This segment of the program illustrates two important foritures. First, it uoes empty o

index = ma. / 10;

The first three cases will execute the same statcinents

grade = "Honours";
break;

“otiowing ey

Same is the case with case 7 and case6::8econd: default condition is used for all other cases
where marks is less than 40.
The switch statement is often used for menu selection. For example:

default :

B

printf(" TRAVEL GUIDE\r\n");
printf(" A Air Timings\n");
printf(" T Train Timings\n");
print®(" B Bus Service\n");
printf(" X To skip\n"); ‘ -
printf("\n Enter your choice\n");
character = getchar();

switch (character)

{

case 'A' :
air-display();

, break;

case 'B' : .
bus-display();
break;

case 'T' :
train-display();
break;

— — -

printf(" No choice\n");

g ana DEaniiiily “\\\\\ R

. Decision Makin

I

\ | At q!\ o \"2 .\‘\ i ‘“"]{,('\\ ”?”_V \h(\. [)“l"t OP a (&nq(,‘/

.\] s)\" “v\(’\ ‘:“\n’\h o :\’\{\\““H b WARRVEL I B R , 0 A Y 'SJ)\.
¥| i . “““;S \ '-‘D t\(]1(Nt \ ‘ ‘[‘ ‘ |) ‘q N]
LU o o) el “l \ 1;1 i, N U{ P.(I\ \1|\r‘

""" Rules for swit .h statement

..... SR

i
|

e i
st

ki B

< . . t (..
|

“35¢ labels must be constants or constant expressions.

No two labels can have the same value.

. N

. Case labels must be unique.

‘ Case labels must end with semicolon.

The break statement transfers the control out of the switch statement.

-

The hreak statoment is optonal. That is, two or more case labels may

belong to tne seme staterments.

e The default iabel is optional. If present, it will be executed when the ex-
pression does not find a matching case label.

e There can be at most one default label.
¢ The default may be placed anywhere but usually placed at the end.

| .+ Itis permitted to nest switch statements.

58 THE?:OPERATOR

The C language has an unusual operator, useful for making two-way decisions. This operator
combination of ? and :, and takes three operands. This op

it erator is popularly known as
conditional operator. The general form of use of the conditional operator is as follows:

C

conditioru;l expression ? expressionl : expr‘és zonz
The conditional expression is evaluated firs zero, ex
gvalu?uﬂd and ig returned as the value of the
is evaluzsted and its value is returned. For e

t. If. the result is nonzero, expressionl is

conditional expression. Otherwise, expresston?2
xample, the segment

if (y < G)
"'14(; = 0;
e
flay = 1;

can be writien us

| ffag = (X < 0‘)4? 0 H 1;

Lonsider the evaluation of the following function:
y=15x+3forx<?2 .
V=2x+5frys g

/ Decision Maks

ﬁm[wdiw/@n .
o the 4 Vigrioies M

(1 S oo
ﬁj (fo ﬁ /Mj&é b Coccrds o
Pgicss gy gcaz{%/(('y /47/ Slons {W (% o
2 psachiiod b Al = |
JZ;%{ Cncsepent a f e ard M'Ujf’@e
walie at am appropriale place 5 the
-}YM’ W’ W 2 W Yo]
M ,,%@ JMC%,,KZZHZ%Z? (%d[f I
W W ZMC/ Jo, W2 Cea? il
:2/ " Balor®

;c(h’? = 0
9=,
[>,./pp;'> ;
| | ,’
| S - S 4N o
o ? (/‘) -~ Jo)

= ’ WY, N

@/p VAL) f ;
o 7o f i
P él@ 1% |

}WAJ&, o
*97% o 15 Aogs Lhamn lo, Lhen E L9

Sncsrrwrted ,A?/ ore ond ,g%@ conlrsl
i goe Srack Lo Wo’-& e

Ao 56, Lhe orliel glbo p am W

P24 5271&91 ‘,

Jjﬁ | /z% ,pje e L (.(2/((4&4 y/ /IW
S = L4 .
20 fire Thl 15, the Loep 12 opeciled fo
At T G5 rrceonlick an Yo lnckoased b
J/c(’ ma eol J{A(Z.«s'(né/ /-’cg /)zw/z/}f?r/y T
Sl alonal ¢ ’/ 2 %%LZ&% Oz/y/jﬁ@/z/‘f/fd% L7 ,%@
Stalrunl 4 P==10), Op geech gecargiions

L8 e Oxadt g pnlies & Agildlicrs AAe
- 10020077, [

ibaberrort <R the Lo a corlial N
?ﬂﬂ(‘-’/ Le ¢ W%a/ ot f/zcz b Lhe &/‘%&7’ — N\
tontrslled L oL O A8 bhe oxll - torlselled |
Loep The Ao chask o Llwsbate Shese |

| «5«"‘1«”:’; wes G Lhe erwiy porlialled 466 . e
**‘ ""*:C‘-' 4 (& 74{;’/: s are MesloA W Yo
s s AL
orit W T e case gf are

oh s ot g e T e ool &y
hoseluose ﬂj}ﬁ,é%e Z@é%’ G%W Z@&F Mé/

L %@4 Lire | T he W’ wﬂ&@&é/

armd Gt - cortiolled Loops cne alse

Lrsn g
' /7/3@/212&5 art ngzgé_,,é&é, 53 :

y.A looping process, in general, would include the [ollowing four steps:

/

Setting and imtiahization of a condition variable
Execution of the statements in the Toop

s) —_

Test for a specified value of the condition vanahle for excontion of the foop

4 1'\(!\‘1}10111111;: orupdatimg the conditon varnahle

The test may be either to determine whether the loop has hoen repeated the specified

number of times or to determine whether a particular condition has heen met.

The C language provides for three constructs for performing loop aperations. They are:
| The while statement.
The do statement
The for statement.
We shall discuss the features and applications of each of these statements in this chapter.

Senﬁnelloops_

the nature of control variable and the Gind o value asaened 1ot 1o
ting the control expression, the loops may be clissitiod mto hwo general - atego
Tes: ‘
1. Counter-controlled loops |

2. Sentinel-controlled loops

When we know in advance exactly how many times the loop will be executed,
we use a counter-controlled loop. We use a control variable known as counter.
The counter must be initialized, test :d and updated properly for the desired loop
operations. The numbey of times we want to execute the loop may be a constant or
¢ variable that is assi%ned a value. /\ counter-controlled loop is sometimes called
definite repetition loop. ;

In a sentinel-controlled loop, a special value called a sentinel value is used to
change the loop control expression from true to false. For example, when reading
data we may indicate the "end of data" by a special value, like -1 and 999. The
controi variable is called sentinel variable. A sentinel-controlled loop is often called
indefinite repetition loop because the number of repetitions is not known before
the loop begins executing. ‘

6.2 THE WHILE STATEMENT

The simplest of , - Ty . .
simplest of all the lovping structures in C is the while statement. We have used while

in ma i o) 167 ’ . i
wany of our earlier programs, The basic format of the while statement is

Sy) "
e 7 e Decision Making an‘d !ro(?ping

while (test condition)-
{ \/
body of the lo0p

}

while i~ an «n The tes! condition 18 evaluated and if
then the body of the loop is executed. After execution of the body, the
evaluated and if it is true, the body is executed once agalﬁl:
This process of repeated execution of the body continues until the test-condition finally
control is transferred out of the loop: On exit, the program co

after the body of the loop. '
ts. The braces are needed only if the

d practice to use braces even if the

The siv-controlled loop statement.
the condition 18 {rue,

test-condition 1s once again
ntinues

hecomes ‘false and the
with the statement immediately
The body of the loop may have one or more statemen
ains two or more statements. However, it 1s a goo

body cont
hody has enlyv ane statement.
41 rewrite the program loop discussed in Section 6.1 as follows: ne \
n \ > —)r -
sum = 0;
- } * LR 3 3 */ t G\ P \
n=1;. /* Initialization S
—p while(n <= 10) /* Testing */ N
{ { o - R o R
Toop | sum = sum + n B0 P
n = ntl;. /* Incrementing */ S
' ' * ‘-?)) 'S
. , \ ;\ ~- o
printf("sum = ¥@\n", sum); - 3 P
________ y = i -l "‘i\.: e
The body of the loop is executed 10 times forn=1,2, ..., 10, each time adding the

square of the value of n, which is incremented inside the loop. The test condition may ars
be written as n < 11; the result would be the same. This is a typical example of counte# &

controlled loops. The variable n is called counter or conirol variable. .
Another example of while statement, which uses the keyboard input is shown below: o

character =] |
while (character != 'Y') ¢

character = getchar();
FAXXAKK 3

First th SERETPRRY ‘
irst the character is initialized to ‘. The while statement then begins by testing

whether character is not ;
equal to Y. el 1e
true and the loop statementq 0 Y. Since the character was initialized to ¢, the test is

character = getchar(); {2

156

is executed Each time

executed unti

cause character equals Yo ana o v | |
Phis s a typieal example of sentinel controlled loops. The character

inel value and the vanable eharscter is the condition variable,

Statvioaen D ANNNNNYN

]
constant voas called ser

A lotter is keved in. the test is carried out and the loop stat
the letter Y is pressed. When Y s pressed, the condition becomes
¢ oop terminates. thus transfernng the control to the

Programming in ANSI C

. . . .
which often referred to as the senfinel variable.

t

Example 6.1 A progrom to evaluate the equation

y=x"
when n is a non-negative integer, is given in Fig. 6.2

—

ement 15
f1]se be-

The varable ¥ is initialized to 1 and then multiplied by x, n times using the while loop.
e loop control variable count is initialized outside the loop and incremented inside the
son When the value of count becomes greater than n, the control exists the loop.

Program
main()

{

J
Qutput

Enter the values of x and n : 2.5
= 2.500000; n = 4; x to power n

X

int count, n;

float x, y;

prihtf(“Enter the values of x and n : ");

scanf("%f %d", &x, &n);

y = 1.0;

count = 1; /* Initialisation */
X

/* LOOP BEGINs */

while (count <= h) /* Testing */
{
y =¥
count++; /* Incrementing */
} _
/* END OF LOOP */
printf("\nx = %f; n = %d; x to power n = %f\n",x,n,v);

<

i

39.060500

Enter the values of x and.n : 0.5 4

x = 0.500000; n = 4; x to power n

i

0.062500

i
SN

Program o compute X 0 the powern using while bop

Decision Making and LOOFT®

TEMENT
THE DO STA section, makes a test of

L0 |

e deeneaed w the 1”'('\’“)% : - be executed &
ety canstrue S ‘H‘ ‘ . “the loop may not be gt . ;L
RS AR R LR et)
pi B executed. Thet e occasions it mi e
o the foop - \‘l.;‘ at the very first attempt. On sur;l h e ations can b
i ot S loop before the test 18 pcrforme . Such €
oop be '

t. This takes the form:

i - ¢ 1)
oudiion O

¢ the condition ‘
ecute the body of the

Ip of the do statemen

S
all
necessary to ex
handled with the he

do

body of the 100p
} |

while (test-cgn_djfﬂioﬂn__)_;w_

e —

evaluate the body o1 the loop first.
the condition
This process
loop will be

(in reaching the do statc.xﬁem, the program proceeds to - 3
A+ the end of the loop, the test-condition i1 the while statement 18 evaluated. Ti
i« true. the program continues to evaluate the body ol the luup uuce.uiﬂl“i;
continues as long as the condition 1s truc. When the condition becomes false, 1o

terminated and the control goes to the statement that appears immcdiately after the while

statement. :
Since the test-condition is evaluated at the bottom of the loop, the do..wlile construct

provides an exit-controlled loup und therefore the body of the loop is always executed at least

once. .
A simple example of a do...while loup 1s:

—

— It

1 printf (“Input a number\n");

| loop number = getnum (.); \./\
‘ - L while (number > 0); «

This segment qf a program reads a numl er from the keyboard until a zero or a negative
number 18 keyeq in, and assigned to the sentinel variable number.
The test conditions may have compound -elations as well. For instance, the statement

while (number > 0 8& number < 100);

in the ehove exangieowould cause thel cecutec
ve exan e vwould cause tie loop to be executed as long as the 1 rer K in li
‘ 8 as wmber keye S
betv.een O and 100, yorin Hes
£ e cin p .
Cons.der another example:

—— - -

i = {; | /* Initializing */

m 4
=)
= {

=%
=)

! 'jf/""

>
Spm = Ly 4

| y.vv":.\] : 4 : \
while A

The loop will be executed as long as one of the two relations is true

Exomple 6.2 A progrom to print the multio
| g 1 . P .
below is given in Fig. 6.3

2 3 4 - 10
2 4 6 8 20
36 9 2 30
; 40
12 . e 120

This program contains two do....
the variable row and executed 12 times. The inne

Program:
tdefine COLMAX 1C

fdefine ROWMAX 12

main()
- {
‘i int row,column, Yy,
; row = 1,
" printf(* “MULTIPLICATION TABLE
: printf(*——--mm e e
i do /*...... OUTER LOOP BEGINS.....
4 {
E VR RVEITE
; dg 7 PR N

y o+ ruw * columng

printf(“%4d”, y);
column = column + |;

"
trremean! 1 n

« s

~ation table from 1 x |

R 4

while loops in nested form. The outer loop s controlled by
r loop is controlled by the varable column

and is executed 10 times, each time the outer loop is executed. That s, the inner loop 1s
executed z total of 120 timeg, vach time printing a value in the table.

\n");

R \”n} ;

f!'/’)i 18

y Y)
(a?'.wg y 4

., -

T ———
-

— Decision Making and Looping — -—\“_l 159
i

while (column <- COLMAX); /*... INNER LOOP ENDS ...*/
printf("\n"); i

row row + 1;

}

while (row < ROMMAX);/*. .. OUTER LOOP ENDS */
printf(" e \n");
) i
‘ Output ;
i MULTIPLICATION TABLE |
] 34 5 6 7 8 9 1o |

2 i
2 4 6 8 10 12 14 16 18 20 |
36 9 12 15 18 21 24 27 30 |
4 8 12 16 20 24 28 32 36 40
> 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
714 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90
| 10 20 30 40 50 60 70 80 90 100
4 11 22 33 44 55 66 77 88 99 110
| 12 24 36 48 60 72 84 96 108 120

f a multiplication table using do...while _-.Jo’qp‘ i ‘

Notice that the printf of the inner loo
allows the printing of all row values in o
a new line to print the next row.

p does not contain any new line character (\n). This
ne line. The empty printf in the outer loop initiates

6.4] THE FOR STATEMENT
Simple ‘for’ Loops
The for loop is another entry-

controlled loop that provides a more

A concise loop control struc-
ture. The general form of the for loop is ,
L
for (initialization ; test-condition ; increment)
(;

SIERERRSEEA A
i

body of the lToop

tart —

T TN ey v sy g .t

B i e s S Le e opame

The execution of the for statement is as follows:

1. Ini;ialization of the control varigbles is done first, using assignment statements such
as1=1and count = 0, The varia |

bles i and count are known as loop-control variablgs‘.
2. The value of the control variable is tested using the test-condition. The test-condition
is a relational expression, such as i < 10 that determines when the loop will exit. If the

LA B ot

AR

Vg,

e — Programmmg in ANSI C ——————— T
160 |

condition 1s frue, the body of the loop 1= executed: otherv | .« the loop is terminated and
the execution continues with the statement that immediately follows the loop.
When the body of the loop 1s executed. the control is transferred back to the for state-
ment after "\~|};‘]l]']’].‘: the last statement in the loop Now, the control variable is
neremented using an assignment statement such as i = i+1 and the new value of the
control varable is again tested to see whether it satisfies the loop condition. If the
condition 1= satisfied, the bodv afthe loop is again executed. This process continues till
the value of the control vanable fails to satisfy the test-condition.

YU EXY (99 enhances the for loop by allowing declaration of var,ables in the initialization portion.
See the Appendix "(C99 Features”.

s

Consider the following segment of a program: - v e
i = 64," - 10 — - /
gl | 4
for (?:J'; LRI N
loop { ;5S4 ' ,
| printf("%d", x);_; 7
C} _ ' g
printf("\n"); :::/// .

i, - 2

This for loop is executed 10 times and prints the digits 0 to 9 in one line. The three
sections enclosed within parentheses must be separated by semicolons. Note that there 18 No
semicolon at the end of the increment section, x = x+1.

The for statement allows for negatiye increlfgjz or exam;ﬂe, the loop discussed above
can be written as follows: % @ 9 3 7
for(x='9;x>='0;x=x—‘1?), 4

v printf("sd", x); @ / i
brintf(*\n"); - @ @
This loop is also executed 10 times, but the output would be from 9 to 0 instead of 0 to 9.
Note that braces are optional when the body of the loop contains only one statement.

Since the conditional test is always performed at the beginning of the loop, the body of the
loop may not be executed at all, if the condition fails at the start. For example,

for (x = 9; x <9; x = x-1)
printf("%d", x);
will never be executed because the test condition fails at the VOIV Dosinning jtgel?

A1 .
] ha) N

Let us again consider the problem of sum of squares of integers ciscussed in, So0 - 61,
This problem can be coded using the for statement as fu]lows:

r————— —_—

4

for (n = 1; n <= 10; n = n+1)

sum = sum+ n*n;
‘i‘!i } |
4 printf("sum = %d\n", sum); |
4 . OO S |
L — SN

B S S SO SR s w4 AN S G e
SRS T VR PRL s 72 it it o LRI

Decision Making and Looping

— e

The bods of the loop \

qum = sum * n*n;g .
10 each time incrementing the sum by the square of the

i< executed 10 times forn = 1,2, o
at all the three actions, namely ini-

for statement jtself, thus making
The for gtatement and its equiva-

value of n.

One of the import
tialization, testing, &
them visible to the programm
lent of while and do statemel

ant points about the for loop .is th
nd incrementing, are placed 1n the
ers and users, in one place.
1ts are shown in Table 6.1.

Table 6.1 Comparison of the Three Loops
e i
or wihile ' do
for - lin-=torn) noo b n- |
while (n=10) do
} -
n=ntl; n=n+l;
r \
' while(n<=10);

 Example Gﬁj The program in Fig. 6.4 uses a for loop fo print the “Powers of 2" taple for
the power 0 to 20, both positive and negative.
The program evaluates the value '

p=2"

successively by multiplying 2 by itself n times.
q = 2_n = _1_
p

Note that we have declared p as a long int and q as a double.

Additional Features of for Loop

The for loop in C has several capabilities that are not found in other loop constructs. For
example, more than one variable can be initialized at a time in the for statement. The state-
ments

for {(n=0; n<l?; ++n)
can oe rewritten as '

for (p=1, n=0; n<l17; ++n)

main()
{ |
~long int p;

- Program , . EE o \\
|
: !
int n; |

Arrays

7.1] INTRODUCTION

So far we have used only the fundamental data types, namely char, int, float, double and
variations of int and double. Although these types are very useful, they are constrained by
the fact that a variable of these types can store only one value at any given time. Therefore,
they can be used only to handle limited amounts of data. In many applications, however, we
need to handle a large volume of data in terms of reading, processing and printing. To proc-
ess such large amounts of data, we need a powerful data type that would facilitate efficient
storing, accessing and manipulation of data items. C supports a derived data type known as
array that can be used for such applications.
An array is a fixed-size sequenced collection of elements of the same data type. It is simply

a grouping of like-type data%In its simplest form, an array can be used to represent a list of
numbers, or a list of names. Some examples where the concept of an array can be used:

« List of temperatures recorded every hour in a day, or 2 manth, or a vear.

 List of employees in an organization.

 List of products and their cost sold by a store.

¢ Test scores of a class of students.

o List of customers and their telephone numbers.

o Table of daily rainfall data.
and s0 on. .

Since an array provides a convenient structure for representing data, it is classified as one
of the data structures in C. Other data structures include structures, lists, queues and trees.
A complete discussion of all data structures is beyond the scope of this text. However, we
shall consider structures in Chapter 10 and lists in Chapter 13.

As we mentioned earlier, an array is a sequenced collection of related data items that
share a common name. For instance, we can use an array name salary to represent a set of
salg{" tes of a group of employees in an organization. We can refer to the individual salaries by
Writing a number called index or subscript in brackets after the array name. For example,

salary [10]
represents the salary of 10 employee, Whil the complete set of values is referred to as an

array, individual values are called elements.

————— I R~

Arrays T i

The ability to use a single name to represent a collection of items and to refer to an lte::i:]}.]
specifving the item number enables us to develop concise and efficient programs. P;Of;ithf'
ple, we can use a loop construet, discussed earlier, with the aubseript as the control variais
to read the entire array, perform calculations, and print out the results. of data in two

We can use arrays to represent not only simple lista of values hut also tables o : a 13 s -
three or more dimensions In this chapter, we introduce the concept of an array and @it
} asoat to eveate and apply the following types of arrays

‘ hmensional arrays
« Dwodimenswonal arravs
« Multidimensional arrays ~

Data Structures

variety of fundamental types as shown below:

Data Types ‘i 1

. . . i it to a |
C supports a rich set of derived and user-defined data types In addition to 1!
|

= ‘ Y .
,___‘_-}_g,__'-:._Derivgd_ Fﬁnd_m‘ental R _ User-defined '
e L Types

- Types

- Arrays - Integral Types - Structures
| - Functions - Float Types - Unions
- Pointers - Character Types - Enumerations

“reave and cructures are referred to as structured data types because they can be l
~ 1 renresent data values that have a structure of some sort. Structured data |
'ypes provide an organizational scheme that shows the relationships among the
ndividual elements and facilitate efficient data manipulations. In programming

| parlance, such data types are known as data structures.

In addition to arrays and structures, C supports creation and manipulation of the
following data structures:

o Linked Lists
s Stacks

s Queues

I

s Trees

e et

7:2] ONE-DIMENSIONAL ARRAYS

Alist of items can be given one variable name using only one subscript and such a variable is
called a single-subscripted variable Or a one-dimensional array. In mathematics, we often
deal with variables that are single-subscripted. For instance, we use the equation.

A - ' l,__

n
to caleulate the average of n values of x, The subscripted variable x; refers to the ith element
of x. In (. .\‘inglo-subscripted varinhle » can be expressed as

X[1], x[2], X|3],eennene. x[n]
The subseript can begin with number 0. That is
x[0]

is allowed. For example, if we want to represent a set of five numbers, say (35,40,20,57,19),
by an array variable number, then we may declare the variable number as follows

int number[5; . |
and the computer reserves five storage locations as shown below: A | g@
. | N ~
] . number [0] QO L \
number {1] N \aq N

number [2] N J
number [3] N
«—— number [4] Y
The values tq the array elements can be assigned as follows: \‘/A
‘ e < 23] \
number[0] = 35; o
number[1] = 40; | NN
number[2] = 20;- ‘
number[3] = 57;
number[4] = 19; |
This woylq cause the array number to store the values as shoywy, below:
number [0] 35. |
number [1] 40
number [2] 20

number [3] | 57 _
number [4] 19— \}<‘

These elements may be used in programs just like any other variable. For example, the
following are valid statements:

~d = number[0] + 10; '
number[4] = number[0] + nimber [2];
number[2] = x[5] + y[101;

value[6] = number[i] * 3,

9

: e Tlever constnts. integer variables like 1, or expressig
The subscripts of an array cian be ket CONGLUNLS, 1EREF | OF eXpressiy

“ oo
that vield integers. C performs no hounds checking and, therefore, care should be exercise
enx"u;r that the array indices are within the declared limits.

[7.3] DECLARATION OF ONE-DIMENSIONAL ARRAYS

Like any other variable, arrays must be declared before they are used so t.hat.the compiler
can aliocate space for them in memory. The general form of array declaration is

type variable-name/ size |;

The Hype specifies the tvpe of element that will be contained in the array, such as int,
float, or char and the size indicates the maximum number of elements that can be stored
inside the array. For example,

float height[50];

declares the height to be an array containing 50 real elements. Any subscripts 0 to 49 are
valid. Similarly,

~int group[10];
declares the group as an array to contain a maximum of 10 integer constants. Remember: °

* Any reference to the arrays outside the declared limits would not necessarily cause an
error. Rather, it might result in unpredictable program results.
e The size should be either a numeric constant or a symbolic constant.

The C language treats character strings simply as arrays of characters. The size in a
character string represents the maximum number of characters that the string can hold. For
instance, '

char name[10];

declares the name as a character array (string) variable that can hold a maximum of 10
characters. Suppose we read the following string constant into the string variable name.

“WELL DONE”
Each character of the string is treated as an element of the array name and is stored in
the memory as follows: |

EW)

— [TANKTT [<2

b INITIPL)Z ATION OF ONE A/ IVENS LIV TZ
:/% r? W&; NZg WW,Z& W
it o ipibinlisid Othoruiise, tay wlll -
Méd/l; cd al Cithes af Lhe W

SAAGES 9 y
x AF WW "

Corpele Tine Frilio [y fowr2

] Z:izfcmz initlalie the chorrents gf ariays

ak S as - wrdinaty -

varlalils Mﬁﬁ% cﬁz j;(%(/w/ The

e apray - rame [165] < § L3 of velie .

j%Z W 4B thy Nkt a0 JE/ZM@@Z,//?/)
Gprrrras . o oxorple , S sholerert

‘00 [5:75, Md,/o,g Mdﬂé ﬂi/rmmuy

M ole 7718/2& Lo 295&

jj;l she may o omnited. % such Cases

./é/ 5 ‘7/75/1 4‘/[@{@(%@4 W% {W %Q(Q,Q
D7, o (, %uﬁ/ g/&/rﬂm@“ %% Mﬂﬁ?}/}(@ j?ft@
A0 seenk

e Sk caerder [T =00 ¥

Wl doclase Mo canentes @y bo conkpy
WWMWW/ This

ﬂwmmfmﬁe%
C%MW[]"‘Z'] o, W o' \e'y.
"YWWMWM%M

02

iﬂwfﬁdg,w%%w
xacﬁa@wm@wﬁmm |

¢ - >
F) X g) ¥ - . ¢ * - \“
‘('\“ (Ks"(" \«§~ ?“ .‘" v\\\§/: \ «‘—Qd‘ _{f’:\.‘ ‘\.:b-{.y“‘:(/ .‘(4"‘2}»

| - (
~/A3 a0 .'."/)é \ . % ’{.4 2 ¢ .,\‘ 4 ‘/. > &6 (, S (i) _"\)" ﬁp ; (g {&‘

'

- ’ . (.‘- ”
R84y Lypne & rpcomnesle nd NC L ‘f Lhe
. 4 ’
. .) » # W — .G - g y)('
fv»‘.;;,:{‘ & ('I:. { ":'_z\ \J N }&.‘? \ s 4 Ny / c i
& ! i

(/# ncenbot (/ 5] fz/o.)o}' i

W nibaloe the [ris€ Lo o lorrients ff’
e R 71.1/ 2O ,‘f...'.\/,f:-\ (Ll'.{/w/ . A 1‘!(,;7/ {Ai ..,v‘x;'/f‘rc.lléf'l;l"y’
Lormwnts bo O, \'J/,:J\(fﬂflﬁ , the Aeoclarateor

Chak £¢19[57 ;—ZEQ') |
v
'Lfl/ $ilial Q,L the Lk

‘]ébcc‘ifv pue . 7

A ‘_dzé‘ 5¢ /7’1,;2(.}1 g
1 77 & SeL)
8 Zo Ao lare

~

' f? P 7D,
U goed «Xog hewesst T
A o > 27L&

m‘ « r A [- -
) A’" R ;/ (AN . (e & n/ // éc&{?

o Sy | -
. C?f .&[l/?’ [(./’?&ff ’f/7‘,l; (V/,//)%(Od(-/; L5 wuaxé%

' 3) . - 4 ,
iexriode Corisides N /@/4@&1/77 JW

b% a C ,"-‘“‘f&;j‘hz; .
C é@/‘[- é’: O ,. [’4/00 , /O: /I+/)
L

o - — —-—

rndining ko clurrents are inllinlied
Lo 10 gt ppen Sre .

Arrays "-‘ 199
* Bubble sort
* Selection son
e Insertion sort
Other sorting techniques include Shell sont, Merge sort and Quick sort.
Searching is the process of finding the location of the specified element in a list.
The specified element is often called the search key. If the process of searching
finds a match of the search key with a list element value, the search said to be
cuccessful: otherwise, it is unsuccessful. The two most commonly used search tech
niques are:
« Sequential search
« Binary search ‘11
A detailed discussion on these techniques is beyond the scope of this text. Consult '\
any good book on data structures and algorithms. \
J |

H
i
i
{ 5

7.5, TWO-DIMENSIONAL ARRAYS

et i it S,

So far we have discussed the array variables that can store a list of values. There could be
situations where a table of values will have to be stored. Consider the following data table,
which shows the value of sales of three items by four sales girls:

. el htem? - Item3
Salesgirl #1 310 275 365
Salesgirl #2 210 190 325
Salesgirl #3 ' 405 235 240
Salesgirl #4 260 300 380

The table contains a total of 12 values, three in each line. We can think of this table as a

matrix consisting of four rows and three columns. Each row represents the values of sales by

a particular salesgirl and each column represents the values of sales of a particular item.

In mathematics, we represent a particular value in a matrix by using two subscripts suc}}xl
as v;;. Here v denotes the entire mairix and vy refers to the value in the i" row and '
column. For example, in the above table v,y refers to the value 325.

. C allows us to define such tables of items by using two-dimensional arrays. The table
discussed above can be defined in C as

v[4113]

Two-dimensional arrays are declared as tollows:

. type array_name [row_size][column._size];'

\\.» (J'/
Program iy in ANST €
200

[. ;
) | | vy) a0 },lr“”‘h‘
' T JUAges USE ONe Py o P

» the e most other languages, witich |
et & cown set of brackets,

wou with commas Lo

aqv qizes, (U places each size it . ')
S(!p.‘lrﬂf(\ arrad zes, O _ v. as shown in]“iﬂ 79 As with the HI”}{IU
Two-dimensional arrays are stored i memory, as sho o
I'wo- ! arrs

' ' codd its maximum Size
dimensional arrays, each dimension of the areay s indexed from zero to its m.l e
mensic o . : " he column wit
’ sne: the first index selects the row and the second index selects the co
minus one, $)

that row.

Column0 Column1 (Inlllmn?.
l()l‘l()l IOIJHI (01(2]
Row0 > , . 310 ', 275 i 365 t
”71-]-[“()—1"“”[1“11 [11(2]*
Row 1---»> ’ »10‘ ’ | »190“ W ‘
) lL:;Ql | W[ZH] [2][2]
Row2 - [“";;;Q" J’ 2 | a0 }
Wl B e

S
Row3"-->L 310 ! 2715 I 365

T T PR T TRIT e .3 e

; Rep{e§entuuon of a two-dimensional arraymmem°ry

;B‘wmple??;‘] Write a program using a fwo-dimensional array to compute and print
o ~ the following Information from the table of data discussed above:

(a) Total value of sales by each girl.

(b) Total value of each item sold.

(¢) Grand total of sales of all items by all girls,

The program and its output are shown in Fig. 7.4. The program uses the variabie valuve in
two-dimensions with the index i representing girls and j representing items. The following
equations are used in computing the results:

2

(a) Total sales by m™ girl = Z value [m](j](girl_total[m])
j=0

3 .
(b) Total value of n item = Z value [i]|n](item _total[n})
=0

3o
(¢) Grand tota) = > D, valucli][j

i=0j:o

288y 2’y wdgts® T A ‘7"‘"}‘!“‘ ’.‘.ﬂ"‘\‘ 1.“!."'\" Q *"I\r;,\\'.gg‘{

flerrrertor Fpmeitisame ret b
wpapileitag T Be canane sAA
mavamans aonewhere fn Gres the funetion te return

s gperamie o Epameee e e ligete of “he grablem When we woite
ww”m fiemrtasrhie *r
e saengareior ol bty Meew

FYSETT IR S L R
i ORaew e e Mnetion will asver return

ey b 121

g 07 PASSING ARRAYE TO FUNC TIONS

v Dim&‘irmﬂ’ Arvavs

carahire # ¢ alee posnible fto pase the valuss of an array o 2
2 am array to 2 called fanetion it e mfPieent o et e
and the aige of the array as arguments For

L dbe the vabuee of simipl
fygrectant Te nRos # nhe b et e

name o the arrey withou! any cuberrypte

*‘IW the ral
largest a.n)

pas the whole array 8 1o the called function The called function oxpecting this all
defned The largest function header muight ook like

"i!
w3 e aAnNPropriets
flont (argest Noat arrayl |, int size)

crpest 13 defed 1o take two arguments, the array name and "he uze

arvas o specily L number of slementan the array The declaration of the formal argumen!
arres 1 made a: follows
float array|):
mvwdwmmw«mphrmtwmmmmywmmv ;

sumbers 11 i DOl DOCOSSATY 1o specify the size of the array here.
Lot us conmder s problem of finding the largest value in an array of slements

pogran o s foliows

“
%“_
ol

Mg ¥
tlpet lergest(floar al |, 1t a),

floetl vel we d o4 08,1.2,3.87),
pristt{tstin’, ?ua;c)t;nim,ﬂ),

tluet tergestifivet o),

peey
@

290 }« S —— - Programming in ANSI C

max afi];
return(imax;

x»aon:nvthncﬁoncn“Inrgvsuvnhux4;mlnudv,Uu:vahumfﬂkﬂleknnentsufurnu/value
become the corresponding elements of arvay a in the called function. The largest [unction
finds the Targest value in the array and returns the result to the main.

In C the name of the array represents the address of its first element. By pas=ing the
array name. we are, i fact, passing the address of the array to the called function. I'he array
m the called function now refers to the same array stored in the memory. Therefore, any
mmmminﬂwawmﬁnﬂwcﬂhdﬁndanﬂHmrdkda“nﬂmoﬁ@nﬂanay

Passing addresses of parameters to the functions is referred to as pass by address (or pass
by pointers). Note that we cannot pass a whole array by value as we did in the case of

ordinary variables.

;E;Eﬁgﬁﬁ Write a program to calculate the standard deviation of an array of val-
""" ues. The array ‘elements are read from the terminal. Use functions to cal-

Culate standard deviation and mean.

Standard deviation of a set of g values is given by

N R
l:*- | S&t\];—z](x “’Xi')
1:
Where X is the mean of the values.
‘ »
Program
#include <math.h>

#define SIZE 5
float std dev(float all, int n);
float mean (float a[], int n);

main() |

{ 5

| float value[SIZE]; |

4 . ,

' int 1, ;

| - |
N printf("Enter %d float values\n", 5 7p).

I o f

/ for (i=0 ;1 < SiZi 'y i++) ;‘

| scani {"%f", &vaive[il); | :

printf("Std.deviaiion ¢ %", std dev{vitye,si7ry
float std_dev(float a[], int n) o

