
UNIT 1: 

Elasticity: 
Three types of elastic moduli - Poisson's ratio-Bending of beams- Expression for bending

moment-Cantilever-Depression of the loaded end of a Cantilever 

Expression for Young's modulus (uniform and non-uniform bending) - experimental determination 

of Young's modulus using pin and microscope method (uniform and non-uniform bending) 

Determination of Young's modulus by Koenig's method for non-uniform bending 

Torsion of a body - expression for couple per unit twist determination of rigidity modulus - Static 

torsion method with scale and telescope - determination of rigidity modulus by torsion pendulum 

with mass 



1 Elasticity 
CHAPTER 

14. INTRODUCTION 
A body can be deformed (i.e., changed in shape or size) by the suitable application of external 

forces on it. A body is said to be perfecthly elastic, if it regains its original shape or size, when the applied 
forces are removed. This property of a body to regain its original state or condition on removal of the 

applied forces is called elasticity. A body which does not tend to regain its original shape or size, even
when the applied forces are removed, is called a perfectly plastic body. No body, in nature, is either 
perfectly elastic or perfectly plastic. Quartz fibre is the nearest approach to a perfectly elastic body. 

Stress: When an external force is applied on a body, there will be relative displacement of 
the particles and due to the property of elasticity, the particles tend to regain their original positions. 
Stress is defied as the restoring force per unit area. Ifa force Fis applied normally to the areaa of 
cross-section A of a wire, then stress = F/A. Its dimensions are ML- T-2. 

Thermal Stresses: Suppose the ends of a rod are rigidly fixed, so as to prevent expansion or 
contraction. If the temperature of the rod is changed, tensile or compressive stresses, called thermal 

stresses, will be set up in the rod. If these stresses are very large, the rod may be stressed even beyond 
its breaking strength. The stress is tensile when there is an increase in length. The stress is compressive 

when there is a decrease in length. A tangential stress tries to slide each layer of the body over the 
layer immediately below it. 

Strain: When a deforming force is applied, there is a change 
in length, shape or volume of the body. The ratio of the change in any 
dimension to its original value is called strain. It is of three types 

) The ratio of change in length () to original length () is called 
longitudinal strain (U). 

(2) Let ABCD be a body with the side CD fixed (Fig. 1.1). Suppose 
a tangential force F is applied on the upper face AB. The shape of the 

body is changed to A'B CD. The body is sheared by an angle 6. This 

angle measured in radians is called the shearing strain (p). 
(3) Volume strain (Bulk strain) The ratio of change in volume (v) to original volume (V) is 

called volume strain (v/ ). 

A A B B 

Fig. 1.1 

Hooke's Law: Within elastic limit, the stress is directly proportional to strain. Stress oc strain 
or stress/strain = E. E is a constant called modulus of elasticity. 

The dimensional formula of modulus of elasticity is ML- T2, Its units are Nm2 
1,2. bIFFERENT MODULI OF ELASTICITY 

(1) Young's modulus (E) : t is defined as the ratio of longitudinal stress to longitudinal strain within elastic limits. Let a wire of length L and area of cross-section A undergo an increase in length 
when a stretching force Fis applied in the direction of its length. 
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Then, longitudinal stress = F/A and longitudinal strain = L 
F/A_FL E = 

Al 1/L 
F (2) Rigidity modulus (G): lt is defined as the ratio of 

1angential stress to shearing strain. 
Consider a solid cube ABCDEFGH (Fig. 1.2). The lower 

face CDGH is fixed and a tangential force F is applied over the 
upper face ABEF. The result is that each horizontal layer of the cube is displaced, the displacement being proportional to its 
distance from the fixed plane. Point A is shifted to A', B to B, 
E to E and F to F through an angle d, where AA' = EE =l. 

Clearly = lIL where l is the relative displacement of the upper face of the cube with respect to the lower fixed face, distant L from it. 

A' B B 

L 

H 

C 

Fig. 1.2 

This angle o through which a line originaly perpendicular to the fixed face is turned, is a measure of the shearing strain. 

Now, Rigidity modulus ()= angential stressF/A 
Shearing strain 

Here, A = l= Area of face ABEF. 
G T/ where T= Tangential stress. (3) Bulk Modulus (K): It is defined as the ratio of volume stress (Bulk Stress) to the voume Strain. 

When three equal stresses (FIA) act on a body in mutually perpendicular directions, such that 
there is a change of volume v in its original volume V, we have, Stress = 

pressure P = FIA. Volume strain=-v/V. The negative sign indicates that if pressure increases, volume decreases. 
F/A 

Volume strain -v/V 
Poisson's Ratio (v): When a wire is stretched, it becomes longer but thinner, i.e., although i1s length increases, its diameter decreases. When a wire elongates freely in the direction of a tensile stres 

it contracts laterally (i.e., in a direction perpendicular to the force). The ratio of lateral contractin 
to the longitudinal elongation is called Poisson's ratio. It is denoted by the letter v. If unit stress causes an extensional strain A in its own direction and lateral contractional stral 

K = Bulk strees P 

-v/V 

Hin a perpendicular direction, v= u/a. 



BENDING OF BEAMS 

1.14. DEFINITIONS 
Beam : 4 beam is defined as a rod or bar of uniform cross-section (cicular or rectangular) 
whose length is very much greater than its thickness. 

Bending Couple : If a beam is fixed at one end and loaded at 
the other end, it bends. The load acting vertically downwards at its free 
end and the reaction at the support acting vertically upwards constitute 
the bending couple. This couple tends to bend the beam clockwise. 
Since there is no rotation of the beam, the external bending couple 
must be balanced by another equal and opposite couple which comes 
into play inside the body due to the elastic nature of the body. The 
moment of this elastic couple is called the internal bending moment. 
When the beam is in equilibrium, 

E b 
1f 

-
d 

W 

Fig. 1.12 
the external bending moment = the internal bending moment. 
Plane of Bending: The plane of bending is the plane in which the bending takes place and the 

bending couple acts in this plane. In Fig. 1.12, the plane of paper is the plane of bending. 
Neutral Axis : When a beam is bent as in Fig. 1.12, filaments like ab in the upper part of the beam are elongated and filaments like cd in the lower part are compressed. Therefore, there must be 
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19 a filament like in between, which is neither elongated nor compressed. Such a filament is known the neutral filament and the axis of the beam lying on the neutral filament is the neutral axis. The hangc in length of any filament is proportional to the distance of the filament from the neutral axis. A5. EXPRESSION FOR THE BENDING MOMENT 
Consider a portion of the beam to be bent into a circular arc, As shown in Fig. 1.13. ef is the neutral axis. Let R be the radius of curvature of the neutral axis and 6 the angle subtended by it at its centre of curvature C. 

Filaments above ef are elongated while filaments below ef are compressed. The filament ef remains unchanged in length. 
Let a'b' be a filament at a distance z from the neutral axis. The length of this filament ad'b' before bending is equal to that of the corresponding filament on the neutral axis ab. 
We have, original length= ab = RO. 
Its extended length = ab = (R+ 2)0 
Increase in its length =d'b' -ab =(R+ z) 0-R0 = z.0. 

C 
Fig. 1.13 

increase in length202 Linear strain = 

original length R.0 R 
IfE is the Young's modulus of the material, 

E Stress/Linear strain 
i.e., Stress E x Linear strain = E (z/R) 
If 6A is the area of cross-section of the filament, 

E the tensile force on the area dA = stress x area = 6A. 
R 

Moment of this force about the neutral axis ef 

A.84.2 = 

R 

forces acting on all the filaments -4 
The sum of the moments of 

284. 
ZOA.22 is called the geometrical moment of inertia of the cross-section of the beam about an axis through its centre perpendicular to the plane otf bending. It is written as equal to Ak*. i.e., 26A.z2=Ak. (A = Area of cross-section and k= radius of gyration). But the sum of moments of forces acting on all the filaments is the internal bending moment which comes into play due to elasticity. 
Thus, bending moment of a beam = EAKIR. 

Notes (i) For a rectangular beam of breadth b, and depth (thickness) d, A = bd and K=/12. 
Ak b£/12. 

(ii) For a beam of circular cross-section of radius r, A = Tand k2 = P/4. 

Ak = nr4 

(ii) EAK2 is called the flexural rigidity of the beam. 
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.16. DEPRESSION OF THE LOADED END OF A CANTILEVER 

Cantilever: A cantilever is a beam fixed horizontally at 0 

one end and loaded at the other end. .dx 
Let O4 be a cantilever of length/fixed at O and loaded with 

a weight W at the other end. OA' is the unstrained position of the 

beam. Let the depression A'A of the free end bey (Fig. 1.14). Let 

us consider an element PQ of the beam of length dx at a distance 

(Q4 x) from the loaded end. Cis the centre of curvature of the 
element PQ and R its radius of curvature. The load W at A and 

the force of reaction W at Q constitute the external couple, so 

that, the external bending moment = W.x. 

The internal bending moment = EAK-/R . 

For equilibrium, Wr = EA F/R or R = EA RIWx 

Draw tangents at P and Qmeeting the vertical line at T and S respectively. Let TS= dy and 
d= Angle between the tangents. Then, ZPCQ also = de. 

R 

W 

Fig. 1.14 

1) 

Wx PQ d R dd or de = . 
E AK 

Now. (From Eq. 1) 

Wx dx W dr 
dy =x d8 X 

EAK2 EAk2 
We have. 

.2) 

Wx the total depression off 

the end of the cantilever 
WP 

dx = 

E AK2 3E AR2 

Angle between the tangents at the ends of a cantilever 
Since the beam is fixed horizontally at 0, the tangent at O is horizontal. If a tangent is drawn at A (the free end of the bent bar), it makes an angle with the horizontal. 

Angle between the d9 W* 
dx. tangents at Pand O 

EAK2 

Angle between the 
tangents at O and A 

Wx 

WP 
2E AK? 

Work done in uniform bending. Consider a beam bent uniformly by an external couple. LetA be the area of cross-sectjon of the beam. Consider a filament of area of cross-section 84 at a distance z from the neutral axis (Fig. 1.13). Then, 
the tensile force on the area ô4= 84. 

R 

The linear strain of this filament = z/R. Ifl is the length of the filament, then, the extension of the filament = zl/R. 

The work done in 

bending the filament force x extension 
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O untorm bending R is constant. Hence, the work done in bending the whole beam is 

W=E2 84= Xx 
El 

AR" 2 
1 EAKI 

R R 2 R2 
Here, EAk*IR = the bending moment and /R = the angle subtended by the bent beam at its 

centre of curvature. 

The work done in uniform bending=(bending moment) x (Angle subtended by the bent 

beam at its centre of curvature). 
Example 13 : Obtain an expression for the depression at the free end ofa heavy beam clamped horizontally at one end and loaded at the other end. 
Consider an element PQ of the beam of lergth dx at a distance x from the fixed end 0 (Fig. 1.14). Now, in addition to the load W acting at A, a weight equal to that of the portion (-x) of the beam also acts at its mid-point. Let W, be the weight of the beam. Then, the weight per unit lengthn of the beam= W,/l. Now, we have an additional weight W,(1-x)/l acting ata distance (1-x)/2 from Q.Therefore, 
total moment of the

=W(1-x)+0-) external couple applied 
2 

-W(1-)+0-* 21 
The beam being in equilibrium, this must be balanced by the bending moment EAKIR. Therefore, 

w0-)-2.x+d)-E-EA EAK2) 

d2 2/ R 

Integrating. 

w . r-lt .EA y +C 

where C is a constant of integration. 
Since at x =0, dyldx = 0, we have C=0. 

Integrating once again, 

EAk (dy = W (k-*/2) dr + x -b +*/3) d 

EAy + or 

P 
or 

3E AK2 



8 EAk 

1.21. MEASUREMENT OF YOUNG'S MODULUS-BY BENDING OF A BEAM 

(1) Non-uniform Bending: The given beam 1s 

symmetrically supported on two knife-edges (Fig. 1.21). AA 
A weight-hanger is suspended by means of a loop of 

thread from the point C exactly midway between the 

knife-edges. A pin is fixed vertically at Cby some wax. 

A travelling microscope is focussed on the tip of the pin 

such that the horizontal cross-wire coincides with the tip W 

of the pin. The reading in the vertical traverse scale of 

microscope is noted. Weights are added in equal steps of 

Fig. 1.21 

Eand nc coTesponding readings are noted. Similarly, readings are noted while unloading. The 

results are tabulated as follows 

Readings of the microscope 

Load increasing| Load decreasing 

yfor Mkg 

Load in kg Mean 

The mean depression y is found for a load of M kg. The length of the beam () between the 

knife-edges is measured. The breadth b and the thickness d of the beam are measured with a vernier 

calipers and screw gauge respectively. 

W 
or E = 

48 Aky 
W3 

Then, 48 EAk 

Mg 
48 x (bd'/12) x y 

E ( W Mg and Ak= bd'/12) 
or 

Mg E -

4 bd'y 

Example 15: In an experimenta rod of diameter 0.0126 m was supported on two knife-edges, 

placed 0.7 metre apart. On applying a load of 0.9 kg exactly midway between the knife-edges, the 

depression on the middle point was observed to be 0.00025 m. Calculate the Young's modulus of the 

substance. (0.99.8) (0.7) 
12 y 12 (0.00025) T (0.0063) 

E 2.039 x 10 Nm2 

(2) Uniform bending: The given beam is supported symmetrically on two knife-edges 4 and 
B (Fig. 1.22). Two equal weight-hangers are suspended, so that their distances from the kinfe-edges 

are equal. The elevations of the centre of the beam may be measured accurately by using a single 

optic level (L). The front leg of the single optic lever rests on the centre of the loaded beam and the 
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hind legs are supported on a separate stand. 

A vertical scale (S) and telèscope (T) are 
arranged in front of the mirror. The telescope 
is focussed on the mirror and adjusted so that 
the reflected image of the scale in the mirror 
is seen through the telescope. The load on 
each hanger is increased in equal steps of 
m kg and the corresponding readings on the 
scale are noted. Similarly, readings are noted 
while unloading. The results are tabulated 
as follows Fig. 1.22 

Readings of the scale as seen in the telescope 

Load increasing 
Shift in reading 

for M kg 
Load in kg 

Load decreasing Mean 

The shift in scale reading for Mkg is found from the table. Let it be S. If 
D The distance between the scale and the mirror, 
x=the distance between the front leg and the plane containing the two hind legs of the optic lever, 
then y Sx/2D. 

The length of the beam / between the knife-edges, and a, the distance between the point of 
suspension of the load and the nearer knife-edge (AC= BD=a) are measured. The breadth b and the 
thickness dof the beam are also measured. 

Mgal2 
EAK2 2D 8E(b d'/12) 

Wal2 Sx 
or Then, 

[Since W Mg and Ak = b #l12] 

3 MgalD 
E = 

Sxbd 
Pin and Microscope Method: The given beam is supported symmetrically on two knife-edges A 

and B. Two equal weight-hangers are suspended so that their distances from the knife-edges are equal 
Apin is placed vertically at the centre of the beam. The tip of the pin is viewed by a microscope. The 
load on each hanger is increased in equal steps of m kg and the corresponding microscope readings 
are noted. Similarly, readings are noted while unloading. The results are tabulated as follows 

Readings of the microscope 
Load in kg y for M kg 

Load increasing Load decreasing Mean 

The mean elevation (y) of the centre for Mkg is found. The length of the beam / between the 

knife-edges and a, the distance between the point of suspension of the load and the nearer knife- 

edge (AC=BD = a) are measured. The breadth b and the thickness d of the beam are also measured. 

Mgal 
8E(bd"/12) 

Wal2 W=Mg and Ak =a 
8EAR2 
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E 3Mea2 
2bd'y 

. 

USing the above formula, we can calculate the Young's modulus of the material of the beam, 

Example 16: Distinguish between uniform and non-uniform bending. 
In uniform bending every element of the beam is bent with the same radius of curvature (R). 

In non-uniform bending, R is not the same for all the elements in the beam. 

XAmple 17: Determine the Young's modulus of the material ofa rod, if it is bent uniformly 
Over two knife-edges separated by a distance of 0.6 m and loads of 2.5 kg are hung at 0.18 m away 
from the knife-edges. The breadth and thickness of the rod are 0.025 m and 0.005 m respectively. The 
elevation at the middle of the rod is 0.007 m. 

E = 3Mgal2 

2bdy 
3x 2.5 x 9.8 x 0.18 x (0.6) 

2x 0.025 x (0.005)' x 0.007 

= 1.088 x 10! Nm2 
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1.23. KÖNIG'S METHOD 

Scale The beam is supported on two knife-edges 

K, and K, separated by a distance l. Two plane 
mirrors m, and m, are fixed near the two ends 

of the beam at equal distances beyond the knife- 

edges. [Fig. 1.24 (a)]. The two plane mirrors face 

cach other and they are inclined slightly outwards 

m2 m1 

from the vertical. 

An illuminated translucent scale and a 

telescope (T) are arranged as shown. The reading 
of a pont Con the scale as reflected first by ni2 

and then by m, is viewed in the telescope. Let the 

load suspended at the mid-point of the beam be 

M. The beam is then bent and the bending is non-uniform. The mirrors at the ends are turned towarde 

each other [Fig. 1.24 (6)]. Let the shift in the scale reading be s. The Young's modulus of the material 

of the beam is then calculated from the relation 

Mg K2 K 
Fig. 1.24 (a) 

E 3Mg (2D+ L) 
2bd s E = 

where = Distance between the knife-edges 
D = Distance between the scale and the remote mirror, m2 
L = Distance between the two mirrors. 

s Shift in scale reading for a load of M kg 
b Breadth of the beam 
d=Thickness of the beam 

The formula can be deduced as explained below. 

Let be the angle through which each end of the beam has been turned due to loading. Then, 
W2 

16 EAK2 

The mirors m, and m, also turn through the

same angle 6 due to loading. In Fig. 1.24(b), m, and 
G 

m, represent the initial and m' and m, the displaced 
K 

positions of the mirrors. Originally, the image of the 
scale division at C coincides with the cross-wire and 
finally when the load is applied, H is seen to be in 
coincidence with the cross-wire. For convenience in 
evaluating 0, consider the rays of light to be reversed 

in their path. 
m,m TOEC will be the original path. When m, is 

turned through armangle 0 to the position m', QE is 

turned through 20 akdatrikes m, at G. Then EG=L20. 

The ray GH is turned through an angle 40, since, in 

addition to QE having moved through 20, m, itself 

has turned through 0. Draw GK parallel to EC. Then, 

m 2:0/ m2 

20 

Flg. 1.24 (b) 

ZKGH= 40 and CK = EG. KH D 40 

The total shift in scale reading =s= CK + KH 
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EG+ KH 
L20+ D 40 

( CK EG 

= (L. +2D) 20 

W2 
But 

16 EAR2 

W2 
s (L +2D) x 2 x Hence, 

16 EAK2 

W(L+2D) E = 

8 Aks 
Now Ak = bë'/12 for a beam of rectangular cross-section and 

W Mg. 

Mgl2 (L + 2D) 3Mgl (2D + L) 

8 (hd/12)s 
E = 

2bds 



TORSION 
(. TORSION OF A BODY 

When a body is fixed at one end and twisted about its axisby means of a torque at the other end, 
the body is said to be under torsion. Torsion involves shearing strain and so the modulus involved 
is the rigidity modulus. 

Torsion of a cylinder-Expression for torque per unit Twist 

Consider a cylindrical wire of length L and radius a fixed at its upper end and twisted through an 

angle by applying a torque at the lower end. Consider the cylinder to consist of an infinite number 
of hollow co-axial cylinders. Consider one such cylinder of radius x and thickness d [Fig. 1.7(0]. 

O' 

A 

L 

dx 
a'p 

B' 
B 

B 

() (i) 
Fig. 1.7 
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gh 
an angle ¢ due to the twisting torque [Fig. 1.7(i)]. The result of twisting the cylinder i 

a shear strain. The angle of shear = ZBAB' =0. 

A e such as AB initially parallel to the axis 00 of the cylinder is displaced to the position 

BB' = x.0 = LÙ or ̂  =x.0/L 

Shearing stress 

We have, rigidity modulus = GAngle of shear (9) 

Now 

Angle of shear (0) 

shearing stress = G.o= Gx 0/L 
Shearing force 

But, shearing stress=- Area on which the force acts 

Shearing force = Shearing stress x Area on which the force acts. 

The area over which the shearing force acts = 2t x d 

Gx 
Hence, the shearing force = F= Ax 27x dr 

L 

The moment of this| Gx 2xdr.x =- 21G dr force about the axis 
L L 

O0 of the cylinder 

Twisting torque on 
the whole cylinder 

= C=[2Gdr 
0 

C TGa'e 

2L 
or 

tGa 
C 

The torque per unit twist (i.e., 
the torque when 0=I radian) 
Note 1: When an external torque is applied on the cylinder to twist it, at once an internal 

torque, due to elastic forces, comes into play. In the equilibrium position, these two torques will be 
equal and opposite. 

Note 2: If the material is in the form of a hollow cylinder of internal radius a and external radius b, then, 

2L 

The torque acting = C= 2TG dt =TG ( -d) on the cylinder 
2L 

Torque per unit twist=c= nG (64- a*/(2L) 
Example 5: What torque must be applied to a wire one metre long, 10-3 metre in diameter n order to twist one end of it through 90", the other end remaining fixed? The rigidity of the material of the wire is 2.8 x 10'0 Nnr2 

Here, L= I m;G=2.8 x 10 Nm2;a= 0 m m= 0.5 x 10-3 m;0 90° = n/2 radians ; 2 

TGa (2.8x 100.5x10,T 
C 

2L 2x1 2 
= 4.318 x 10 Nm 



0. DETERMINATION OF RIGIDITY 
MODULUS-STATIC 

TORSION METHODD 

Searle's apparatus: The experimental rod is rigidly 

fixed at one end A and fitted into the axle of a wheel W at 

the other end B (Fig. 1.8). The wheel is provided with a 

grooved edge over which passes a tape. The tape carries 

a weight hanger at its free end. The rod can be twisted by 

adding weights to the hanger. The angle of twist can be 

measured by means of two pointers fixed at Q and R which 

move over circular scales S, and S,. The scales are marked 

in degrees with centre zero. 

wnewww 

S1 

S2 
Sul 

Q 
R 

With no weights on the hanger, the initial readings of 

the pointers on the scales are adjusted to be zero. Loads are 

added in steps of m kg (conveniently 0.2 kg). The readings 
on the two scales are noted for every load, both while 
loading and unloading. The experiment is repeated after reversing the twisting torque by winding 

the tape over the wheel in the opposite way. The observations are tabulated. 

The readings in the last column give the twist for a load of Mkg for the length OR (=L) of the rod. 

The radius a of the rod and the radius R of the wheel are measured. 

Fig. 1.8 

If a load of M kg is suspended from the free end of the tape, the twisting torque = MgR. 

The angle of twist =0 degrees = 0. t/180 radians. 

TGa 0r 
The restoring torque = 

180 2L 180 

MgR = 
TGa 0. Tr 360 M gRL 

ae 
For equilibrium, G or 

2L 180 

Since a occurs in the fourth power in the relation used, it should be measured very accurately. 
Notes: (1) We eliminate the error due to the eccentricity of the wheel by applying the torque 

in both clockwise and anticlockwise directions. 
(2) We eliminate errors due to any slipping at the clamped end by observing readings at two 

points on the rod. 

1.11. DETERMINATION OF RIGIDITY MODULUS-STATIC TORSION METHOD. 
(SEARLE'S APPARATUS-SCALE AND TELESCOPE)= wwww 

A plane mirror strip is fixed to the rod at a distance L from the fixed end of the rod [Fig. 1.9J 
A vertical scale (S) and telescope (1) are arranged in front of the mirror. The telescope is focussed 
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S on the mirror and adjusted so that the reflected image o 

the scale in the mirror is seen through the telescope. WIu 
Some dead load W on the weight-hanger, the reading o 
the scale division coinciding with the horizontal cross- 

Wire is taken. Weights are added in steps of m kg and tne 
corresponding scale readings are taken. Weights are then 
decreased continuously in steps of m kg and the readings 
taken again. The torque is reversed now, by passing the 

tape anticlockwise on the wheel. The readings are takKen 

as before. From these readings, the shift in scale reading 

(s) for a load m kg is found. 

.- 

-> --E 
w 

Fig. 1.9 

a of the The length L of the rod from the fixed end to the mirror is measured. The mean radius a of 

ing 
the 

rod is accurately measured with: screw gauge. The radius (R) of the wheel is found by measurine 

its circumference with a thread. The distance (D) between the scale and the mirror IS measured with 

a metre scale. 

G is calculated using the formula G= 4 mg R LD 

ta's 

Shift in scale 
reading for 

4m kg 

Telescope Reading X Y 
Load in kg Torque clockwise Torque anticlockwise 

2 
Loading Unloading Mean () Loading Unloading Mean () 

W 

W+m 
W+2 m 

W+3 m 

W+4 mn 

W+5m 

W+6 m 

|W+7 m 
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