UNIT I:

Elasticity:

Three types of elastic moduli — Poisson's ratio — Bending of beams— Expression for bending

moment —Cantilever—Depression of the loaded end of a Cantilever

Expression for Young's modulus (uniform and non—uniform bending) — experimental determination
of Young's modulus using pin and microscope method (uniform and non—uniform bending) —
Determination of Young's modulus by Koenig's method for non—uniform bending

Torsion of a body — expression for couple per unit twist — determination of rigidity modulus — Static
torsion method with scale and telescope — determination of rigidity modulus by torsion pendulum

with mass
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Elasticity

. INTRODUCTION e

A body can be deformed (i.e., changed in shape or size) by the suitable application of external
forces on it. A body is said to be perfectly elastic, if it regains its original shape or size, when the applied
forces are removed. This property of a body to regain its original state or condition on removal of the
applied forces is called elasticity. Abody which does not tend to regain its original shape or size, even
when the applied forces are removed, is called a perfectly plastic body. No body, in nature, is either
perfectly elastic or perfectly plastic. Quartz fibre is the nearest approach to a perfectly elastic body.

tress : When an external force is applied on a body, there will be relative displacement of
the particles and due to the property of elasticity, the particles tend to regain their original positions.
Stress is defined as the restoring force per unit area. If a force F is applied normally to the area of
cross-section A of a wire, then stress = F/A. Its dimensions are ML-! T-2.

Thermal Stresses : Suppose the ends of a rod are rigidly fixed, so as to prevent expansion or
contraction. If the temperature of the rod is changed, tensile or compressive stresses, called thermal
stresses, will be set up in the rod. If these stresses are very large, the rod may be stressed even beyond
its breaking strength. The stress is tensile when there is an increase in length. The stress is compressive
when there is a decrease in length. A tangential stress tries to slide each layer of the body over the
layer immediately below it.

/Strain : When a deforming force is applied, there is a change A A’ B g
in length, shape or volume of the body. The ratio of the change in any ' '
dimension to its original value is called strain. It is of three types :- ! '

(1) The ratio of change in length (J) to original length (L) is called i /

longitudinal strain (//L). -d;" &
(2) Let ABCDbe a body with the side CDfixed (Fig, 1.1). Suppose |/ W
a tangential force F is applied on the upper face AB. The shape of the D’ é

body is changed to A'B CD. The body is sheared by an angle ¢. This
angle ¢ measured in radians is called the shearing strain ().

(3) Volume strain (Bulk strain) : The ratio of change in volume (v) to original volume (V) is
called volume strain (v/ V).

Fig. 1.1

Hooke’s Law : Within elastic limit, the stress is directly proportional to strain. Stress o strain
or stress/strain = E'. E'is a constant called modulus of elasticity.

The dimensional formula of modulus of elasticity is MZ-! T2. Its units are Nm2.
1,2/ DIFFERENT MODULI OF ELASTICITY ==~
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(1) Young’s modulus (E) : It is defined as the ratio of longitudinal stress to longitudinal strain
within elastic limits. Let a wire of length L and area of cross-section A undergo an increase in length
I'when a stretching force F'is applied in the direction of its length.
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Then, longitudinal stress = /74 and longitudinal strain = /L.
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(2) Rigidity modulus (G) : It is defined as the ratio of .
fangential stress to shearing strain.

Consider a solid cube ABCDEFGH (Fig. 1.2). The lower , I
face CDGH is fixed and a tangential force F is applied over the e o
upper face ABEF. The result is that each horizontal layer of tbe
cube is displaced, the displacement being proportional to its
distance from the fixed plane. Point 4 is shifted to A',Bto B, {
Eto E'and F to F through an angle ¢, where A4' = EE' = | /

Clearly ¢ =
the upper face of
distant L from it.

This angle ¢ through which a
measure of the shearing strain.

E
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~
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l/L where I is the relative displacement of wD

the cube with respect to the lower fixed face,

Fig. 1.2

line originally perpendicular to the fixed face is turned, jg,

o i F/A
Now, Rigidity modulus (G)= Tanger.ltlal strt?ss = —/
Shearing strain ¢
Here, A =L? = Area of face ABEF
A G =T/ where T= Tangential stress.
(3) Bulk Modulus (X):
Strain.

1t is defined as the ratio of volume stress (Bulk Stress) to the volume

ger but thinner, i.e., although

B e om m s

in the direction of a tensile stress

- T he ratio of lateral contraction

d by the letter y.
its own direction and lateral contractional strai



BENDING OF BEAMS
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1.14. DEFINITIONS ———————— " : s
\(ﬂ J/ /l/ﬂ-am : A beam is defined as a rod or bar of uniform cross-section (circular or rectangular)

+ whose length is very much greater than its thickness.
| Bending Couple : If a beam is fixed at one end and loaded at
the other end. it bends. The load acting vertically downwards at its free

end and the reaction at the support acting vertically upwards constitute //
the bending couple. This couple tends to bend the beam clockwise.

Since there is no rotation of the beam, the external bending couple

must be balanced by another equal and opposite couple which comes

into play inside the body due to the elastic nature of the body. The

moment of this elastic couple is called the internal bending moment. _

When the beam is in equilibrium, Fig. 1.12
the external bending moment = the internal bending moment.

Plane of Bending : The plane of bending is the plane in which the bending takes place and the
bending couple acts in this plane. In F ig. 1.12, the plane of paper is the plane of bending.

Neutral Axis : When a beam is bent as in Fig. 1.12, filaments like ab in the upper part of the
beam are elongated and filaments like ¢d in the lower part are compressed. Therefore, there must be
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a filament like ef'in between, which is neither elongated nor

—
c compressed. Such a filament jg

as the neutral filament and the axis of the beam lying on the neutra] fi i
chapge in length of any filament is proporti

lament ig the neutral ax;
. axis.
onal to the distance of the The

filament from the neutra] axis,
/‘1.15. EXPRESSION FOR THE BENDING MOMENT

Consider a portion of the beam to be bent in al
(\15 shown in Fig. 1.13. ef is the neutral axis, Let R be the radius of

curvature of the neutral axis and 0 the angle subtended by it at its ﬂ

bl
AR
centre of curvature C. >
Filaments above ef are elongated while filaments below ef are R
compressed. The filament ef remains unchanged in length.
C

-
e

to a circular ar,

Let a'b’ be a filament at a distance z fr
The length of this filament a'b’ before bendin
corresponding filament on the neutral axis ab.

We have, original length = gb = Rp.
Its extended length = ¢'p’ = (R+2)0 ,
Increase in its length = g'p’ — gp = R+z)0-RO=z.0.

om the neutral axis.
g is equal to that of the

Fig. 1.13

. . _ increasein length 7.9
Linear strain = — =
original length  R.Q

If £ is the Young’s modulus of the material,

Z
R

E = Stress/Linear strain

Stress = E x Linear strain = £ (z/R)
If 84 is the area of cross-section of the filament,

ie.,

) E.z
the tensile force on the area 04 = stress x area = — < 0A.

Moment of this force about the neutral axis ef

AL YR YR
R R
The sum of the moments of _JE 2
. =X—04.z
forces acting on all the filaments R
_E T84.z2°
R

LA . 2% is called the geometrical moment of inertia of the cross-section of the beam about
an axis through its centre perpendicular to the plane of bending. It is written as equal to A&° . i.e.,
264 . 22 = AK%. (A = Area of cross-section and k = radius of gyration).

But the sum of moments of forces acting on
which comes into play due to elasticity.

Thus, bending moment of a beam = EAKY/R,

all the filaments is the internal bending moment

Notes : (i) For a rectangular beam of breadth b, and depth (thickness) d, A = bd and
k=2,
: Ak? = bd*/12.
(i) For a beam of circular cross-section of radius r,A=mr*and k* = /4.
: AR = 4, =

(iif) EAK? is called the flexural rigidity of the beam.
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CANTILEVER =
1.16. DEPRESSION OF THE LOADED END OF A

i 0

Cantilever : A cantilever is a beam fixed horizontally at
one end and loaded at the other end. el with

Let O4 be a cantilever of length / fixed at Oand ?t?on e
a weight I at the other end. OA' is the unstrained r;)s L14). Let
beam. Let the depression A'A of the free cpd bey (Fig. d 'ste'mce
us consider an element PQ of the beam of length dx ata di e
(04 = x) from the loaded end. C'is the centre of curvz;t;rt: z e
clement PQ and R its radius of curvature. The load W at o 1
the force of reaction W at Q constitute the, external coqp e, %o
thﬁt. the external bending moment = W. x.

c ,
The internal bending moment = EAk*/R . Fig. 1.14 o
For equilibrium, Wx = EA k%R or R = EA k*/Wx

Draw tangents at P and Q meeting the vertical line at T and S respectively. Let TS = dy and
dd = Angle between the tangents. Then, ZPCQ also = db.

dx Wx From Eq. 1
Now, PQ=dx=Rd90rd9=—R"=dx'EAk2 (Er %1
. Wxdx Wx* dx (2
We have, dy=xd0=x. A =—EAk2 @)
the total depression of _ _]‘ W dx = wr _ /
the end of the cantilever| ~ JEA k2 3E A k>

Angle between the tangents at the ends of a cantilever :

Since the beam is fixed horizontall

y at O, the tangent at O is horizontal. If a tangent is drawn
at A4 (the free end of the bent bar), it m

akes an angle 0 with the horizontal.

Angle between the - 4= Wx &
Angle between the } — 0= ]~_ Wx &
tangents at O and A4 ) EA k2
2
9 = Wi .
2E A k?

Work done in uniform bending. Consider a beam b
be the area of cross-section of the beam. Consider a filame

ent uniformly by an external couple. Let 4
z from the neutral axis (Fig. 1.13), Then

nt of area of cross-section 04 at a distance

the tensile force on the area 54 = £2 A,

The linear strain of this filament = z/R. |f l'is the length of the filament, then,
the extension of the filament = z//R.

The work done in 1 force x '
bending the filament| ~ 5 '°r°¢ * eXtension
1
2

EZ-SAXZI LE
R
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- : m is
For uniform bending R is constant. Hence, the work done in bending the whole bea

2~ ]
_1E 5, VE ., 1EA™ 1
‘EFZZ SA—zRZXAk 2 R R

Here, EAk%/R =

the bending moment and /R = the angle subtended by the bent beam at its
centre of curvature.

. The work done in uniform bending = 1 (bending moment) x (Angle subtended by the bent
2
beam at its centre of curvature).

Example 13 : Obtain an expression for the depression at the free end of a heavy beam clamped
horizontally at one end and loaded at the other end.

Consider an element PQ of the beam of lergth dx at a distance x from the fixed end O (Fig.
1.14). Now, in addition to the load W acting at 4, a weight equal to that of the portion (/ — x) of the

beam also acts at its mid-point. Let W, be the weight of the beam. Then, the weight per unit length

of the beam = W,/I. Now, we have an additional weight W, (I-x)/l acting at a distance (/ - x)/2 from
Q. Therefore,

total moment of the

/4 L (I=x)
=W(l-x)+ =L-
external couple applied} (1=x) [ (-2 2

=W(l-x)+ L (1-x?

The beam being in equilibrium, this must be balanced by the bending moment EAA/R. Therefore,

: 2 2
W (I =x)+ (2 Zp xy 52y < BAE oo (ﬂj
21 R dx’

Integrating,
2

3
W(lx—x—)+m(12 x—1.x +x—j - B2 Y, ¢
2 ) 2 3 dx

where C'is a constant of integration.
Since atx =0, dy/dx =0, we have C = 0.
Integrating once again,

d 1
EAkz}jd =Wj(lx——x2/2)dx+ﬁj'(]2 243
o’ o JEx =+ %13y ax
0 0 b

P\ w

EAK? =W(—)+—'(—)

o Aky =W 3) 20\ 4
) _Wl3+Wn_’3
or EAk?y = 3 g’

3 P
= W+—W)

> g ( 8 ' )3E 442
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1 21. MEASUREMENT OF YOUNG’S MODULUS—BY BENDING OF A BEAM —
_________ >

(1) Non-uniform Bending : The given beam is €-——-———-
symmetrically supported on two knife-edges (Fig. 1.2 n.
A weight-hanger is suspended by means of a loop of
thread from the point C exactly midway between the
knife-edges. A pin is fixed vertically at C by som¢® wax.
A travelling microscope is focussed on the tip of the pin
such that the horizontal cross-wire coincides with the tip
of the pin. The reading in the vertical traverse scale of L——
microscope is noted. Weights are added in equal steps of
m kg and the corresponding readings are noted. Similarly;

results are tabulated as follows : .
Readings of the microscope y for M kg

Load increasing | Load decreasing Mean

W

Fig. 1.21

readings are noted while unloading. The

e

Load in kg

o

The mean depression y is found for a load of M kg. The length of the
knife-edges is measured. The breadth b and the thickness d of the beam are me

calipers and screw gauge respectively.
wi® Wi
Then, y=——7"70r E= 5
, A8 EA k 48 Ak”y

beam (/) between the
asured with a vernier

3
or gl e e (-+ W= Mg and 4K = bP/12)
48 x (bd® 112) x y

Mgl ?

4bd’y /
Example 15 : In an experiment a rod of diameter 0.0126 m was supported on two knife-edges,

placed 0.7 metre apart. On applying a load of 0.9 kg exactly midway between the knife-edges, the
depression on the middle point was observed to be 0.00025 m. Calculate the Young's modulus of the

substance. 3
g Ml _ (0.9)(9.8) (0.7)°
12y 12(0.00025) 7 (0.0063)" )

l

s E =2.039 x 10" Nm™ , |

. (2) Uniform bending : The given beam is supported symmetrically on two knife-edges A-and |

B (Fig. 1.22). Two equal weight-hangers are suspended, so that their distances from the kinfe-edges |
are equal. The elevations of the centre of the beam may be measured accurately by using a single l

optic level (L). The front leg of the single optic lever rests on the centre of the loaded beam and the
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hind legs are supported on a separate stand. S
A vertical scale (S) and telescope (7) are
arranged in front of the mirror. The telescope

is focussed on the mirror and adjusted so that

the reflected image of the scale in the mirror

is seen through the telescope. The load on é
each hanger is increased in equal steps of T
m kg and the corresponding readings on the
scale are noted. Similarly, readings are noted
while unloading. The results are tabulated

27

as follows : Fig. 1.22
Load in kg I?eadings of the scale as seen in the telescope Shift in reading
Load increasing | Load decreasing Mean Jor Mkg

The shift in scale reading for M kg is found from the table. Let it be S. If

D = The distance between the scale and the mirror,
x =the distance between the front leg and the plane containing the two hind legs of the optic lever,
y =8x/2D.

The length of the beam 7 between the knife-edges, and a, the distance between the point of
suspension of the load and the nearer knife-edge (4C = BD = a) are measured. The breadth b and the
thickness d of the beam are also measured.

Wal® Sx

then

Then,

y =

Sxbd’

Pin and Microscope Method : The given beam is supported symmetrically on two knife-edges 4
and B. Two equal weight-hangers are suspended so that their distances from the knife-edges are equal.
Apin is placed vertically at the centre of the beam. The tip of the pin is viewed by a microscope. The
load on each hanger is increased in equal steps of m kg and the corresponding microscope readings
are noted. Similarly, readings are noted while unloading. The results are tabulated as follows :

Mgal i

= o —=——2>———
8EAK* 2D 8E(bd*/12)
[Since W= Mg and Ak> = b d%/12]
3 Mgal’D
g=2128% Y

/
e
/

e

Load in kg

Readings of the microscope

Load increasing

Load decreasing

Mean

yfor Mkg

The mean elevation () of the centre for M kg is found. The length of the beam / between the

knife-edges and a, the distance between
edge (4C = BD = a) are measured. The br

_ Wal* _
8EAKE  8E(bd’/12)

Mgal*

y

d3
( W = Mg and Ak” = —b——)

the point of suspension of the load and the nearer knife-
eadth b and the thickness d of the beam are also measured.

12
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_ 3Mgal’

 2bdy

Using the above formula, we can calculate the Young’s modulus of the material of the beam,
Example 16 : Distinguish between uniform and non-uniform bending.

In uniform bending every element of the beam is bent with the same radius of curvature (R),

In non-uniform bending, R is not the same for all the elements in the beam.

Example 17 : Determine the Young s modulus of the material of a rod, if it is bent uniformiy
over two knife-edges separated by a distance of 0.6 m and loads of 2.5 kg are hung at 0.18 m away
from the knife-edges. The breadth and thickness of the rod are 0.025 m and 0.005 m respectively. The

elevation at the middle of the rod is 0.007 m.
_ 3Mgal®  3x2.5x9.8x0.18x (0.6)"
2bd’y  2x0.025 x (0.005)° x 0.007

=1.088 x 10!l Nm—2,

E

E



Properties of Matt
—— -

30

1.23. KONIG’S METHOD e =

The beam is supported on two knife-edges
K, and K, separated by a distance /. Two plane &
mirrors m, and m, are fixed near the two ends
of the beam at equal distances beyond the knife-
edges. [Fig. 1.24 (a)]. The two plane mirrors face
cach other and they are inclined slightly outwards
from the vertical.

An illuminated translucent scale and a
telescope (7°) are arranged as shown. The reading
of a pomt C on the scale as reflected first by 77, K, Mg K,
and then by m, is viewed in the telescope. Let the Fig. 1.24 (a)
load suspended at the mid-point of the beam be
M. The beam is then bent and the bending is non-unl
each other [Fig. 1.24 (b)]. Let the shift in the scale rea
of the beam is then calculated from the relation

_ 3Mgl* 2D+ 1)
- 2bd’s
where /= Distance between the knife-edges
D = Distance between the scale and the remote mirror, 7,
L = Distance between the two mirrors.
s = Shift in scale reading for a load of M kg
b = Breadth of the beam
d = Thickness of the beam
The formula can be deduced as explained below.
Let O be the angle through which each end of the beam has been turned due to loading. Then
16 EAk?

form. The mirrors at the ends are turned towarg
ding be s. The Young’s modulus of the materi

The mirrors m, and m, also turn through the
same angle 0 due to loading. In Fig. 1.24(5), m, and
m, represent the initial and m," and m,’ the displaced
positions of the mirrors. Originally, the image of the
scale division at C coincides with the cross-wire and
finally when the load is applied, H is seen to be in
coincidence with the cross-wire. For convenience in
evaluating 0, consider the rays of light to be reversed
in their path.

TQEC will be the original path. When m is
turned through amyangle 6 to the position m/', QF is
turned through 23(;}%ctrikes m, at G. Then EG =120,
The ray GH is turned through an angle 40, since, in
addition to QF having moved through 20, m, itself
has turned through 0. Draw GK parallel to EC. Then,
/KGH =40 and CK= EG.KH =D 49

The total shift in scale reading

s I X QO

=s=CK+KH



lasticity 31

= FKG+ KH (. CK=EG)
=120+ D 40
=(L+2D)20

But 0 Wi

16 EAK?

wi?

Hence, s =(+2D)x2x ——
16 EAk>

~ WI*(L +2D)

E
8 Ak?s

Now 44> = badP/12 for a beam of rectangular cross-section and
W = Mg.

. Mgl® (L +2D) 3Mgl*> 2D+ L)
8 (bd” /12)s 2bd’s




TORSION
D. TORSION OF A BODY e

When a body is fixed at one end and twisted about its axis by means of a torque at the other end,

the body 1s said to be under torsion. Torsion involves shearing strain and so the modulus involved
is the rigidity modulus.

Torsion of a cylinder—Expression for torque per unit Twist

Consider a cylindrical wire of length L and radius a fixed at its upper end and twisted through an
angle 6 by applying a torque at the lower end. Consider the cylinder to consist of an infinite number
of hollow co-axial cylinders. Consider one such cylinder of radius x and thickness dx [Fig. 1.7(i)].

Fig. 1.7




Properties of Matte,
10

¢ is displaced to the positioy

, inde i i
axis 00" of the cylin It of twisting the cylinder jg

A line such as 4B initially parallel to the (ii)]. The rest

AB' through an angle ¢ due to the twisting torque [Fig. 1.7
a shear strain. The angle of shear = ZBAB' = d.
Now BB =x0=Loor¢= x.0/L
_ Shearing ST _
We have, rigidity modulus = G = Angle of “near (0)

shearing stress =G . ¢ = Gx 0/L )
Shearing force
Area on which the force acts
ss X Area on which the force acts.

But, shearing stress =

Shearing force = Shearing stre
The area over which the shearing force acts = 27 x dx
Gx0

Hence, the shearing force = F = x 27x dx

force about the axis
OO’ of the cylinder

Twisting torque on} - I 2nGO ; dx
0

The moment of this}

the whole cylinder

or C=

G a’
2L
Note 1: When an external torque is applied on the cylinder to twist it, at once an internal

torque, due to elastic forces, comes into play. In the equilibrium position, these two torques will be
equal and opposite.

Note 2: If the material is in the form of a hollow
radius b, then,

The torque per unit twist (i.e.,
the torque when 0 =1 radian)

cylinder of internal radius ¢ and external

The torque acting| 5 2nGo 3 nGo
on the cylinder }—Cz-[ L = 2L

Torque per unit twist = ¢ = nG (b4 - a*)/(2L)
Example 5: What torque must be

order to twist one end of it through 90°, the other ¢ ' metre in diameter in
M ) er end re 1 S .
of the wire is 2.8 x 10" Nm2, maining fied ? The rigidity of the material

(®* -a*)
applied to a wire one metre long, ](-3

Here,L=1m;G=2.8 x 10!0 Nm?2:g= 1072

a BS m=0.5x 103

C= nGa 0 = 1t(2.8><1010)(0.5x10—3)4
——— Ao x107)"

2L 2)(1 XE

M 0 = 90° = 1/2 radians ;

=4.318 x 103 Nm



TORSION MIETROD e,
1.10. DETERMINATION OF RIGIDITY MODULUS—STATIC E—

Searle’s apparatus : The experimental rod is rigidly
fixed at one end 4 and fitted into the axle of a wheel Wat
the other end B (Fig. 1.8). The wheel is provided w1tl_1 a
grooved edge over which passes a tape. The tape. carries
a weight hanger at its free end. The rod can be twisted by
adding weights to the hanger. The angle of twist can'be
measured by means of two pointers fixed at 0 and R which
move over circular scales S| and S,. The scales are marked
in degrees with centre zero.

With no weights on the hanger, the initial readings of
the pointers on the scales are adjusted to be zero. Loads are
added in steps of m kg (conveniently 0.2 kg). The readings Fig. 1.8

on the two scales are noted for every load, both while . o o
loading and unloading. The experiment is repeated after reversing the twisting torque by winding

the tape over the wheel in the opposite way. The observations are tabulated.
The readings in the last column give the twist for a load of Mkg for the length QR (= L) of the rod.
The radius a of the rod and the radius R of the wheel are measured.
If a load of M kg is suspended from the free end of the tape, the twisting torque = MgR.
The angle of twist = 8 degrees = 0. 7/180 radians.

| 4
The restoring torque = — Ga” On
2L 180
Ga' 8.
For equilibrium, MgR = ke T oor G= 360M gRL
2L 180 240

Since a occurs in the fourth power in the relation used, it should be measured very accurately.

Notes: (1) We eliminate the error due to the eccentricity of the wheel by applying the torque
in both clockwise and anticlockwise directions.

(2) We eliminate errors due to any slipping at the clamped end by observing readings at two
points on the rod.

1.11. DETERMINATION OF RIGIDITY MODULUS—STATIC TORSION METHOD.
(SEARLE’S APPARATUS—SCALE AND TELESCOPE) =

A plane mirror strip is fixed to the rod at a distance L from the fixed end of the rod [Fig. 1.9]-
A vertical scale (S) and telescope (7) are arranged in front of the mirror. The telescope is focussed
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on the mirror and adjusted so that the reflected image .Of S
the scale in the mirror is seen through the telescope: With
Some dead load W on the weight-hanger, the reading of
the scale division coinciding with the horizontal cross-
wire is taken. Weights are added in steps of m kg and the
corresponding scale readings are taken. Weights are t_hen
decreased continuously in steps of m kg and the re.admgs
taken again. The torque is reversed now, by passing the
tape anticlockwise on the wheel. The readings are taken

as before. From these readings, the shift in scale reading
(s) for a load m kg is found.

The length L of the rod from the fixed end to the mirror 1S measured. The mean radius a of th,

- is found by measy;
rod is accurately measured with a screw gauge. The radius (R) of the wheel is Y measuring

e mirror is measured wi
its circumference with a thread. The distance (D) between the scale and th with
a metre scale.

4mgRLD

G is calculated using the formula G = 1
« na

————

Telescope Reading X7 Shift in scale
Torque clockwise Torque anticlockwise reading for

- Im kg
Loading | Unloading | Mean (X) | Loading | Unloading | Mean ()

Load in kg

/4
W+m
W+2m
W+3m
W+4m
W+5m
W+6m
W+7m
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