CHAPTER 6

INTEGRAL TRANSFORM AND GREpy
FUNCTION METHODS

6.1 Introduction

The integral transforms are essentially a mathem?tical’ tool, Which cap b,
used to solve several problems in science and engineering. Linear integry|
transforms of functions, £ (7), defined on a finite or inﬁmfe mterya] a<t<pae
particularly useful in dealing with problems in linear differentia] €quations, A

general linear integral transformation of a function £ () is represented by the
equation

76)=1170)= i) ) 61

where (s, ¢) is called its kernel. It represents a function f_ (s), the image or
transform of the function f(2).

The kemels and limits of int

egration of some of the integral transforms are
given in table 6.1

Name of Transform k(s, t) a b

Laplace transform o 0

Fourier transform T £ -

eu‘t
i V2r

Fourier sine transform 0 o
‘/_g sin s¢

Fourier cosine transform ] 0 00
\/—z Cos st

Hanke] transform 4 ©

Mellin transform : Bl (St) :

h Pl 0 R
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Multiplying (6.1.1) throughtout by & and integrating between the limits
We choose & as given in (6.1.3) and then from (6.1.2) and (6.1.4), we hav‘;

L(F)+ M +gls..2,)=
Therefore, (L i A)J} =¢- g(s,y,z,...) =@ (say) (6.1.5)

Now (6.1.5) is a partial differential equation for f'in the independent
variables y, z,... but not in x. Thus we conclude that the application of z
integral transform to a partial differential equation reduces the numbey or;

independent variables by one.
Hence the result.

6.2 Laplace Transforms

This transform was first introduced by Laplace (1749-1827), a French
mathematician, in the year 1790 in his work on probability theorems. This
technique became popular when Heaviside applied it to the solutions of the
ordinary different equations representing problems in electrical engineering.

Definition 6.2.1: Let /(¢) be a piecewise continuous function. Then £ (7) is
said to be of exponential order « if there exists a real and finite positive number
M such that

lim| £(r) e <M

{—0

and we write

| 7() |=0fe*)

Definition 6.2.2: Let f(¢) be a continuous and single-valued function of the
~ real variable ¢ defined for all , 0 < 7 < 0, and is of exponential order. Then the
~ Laplace transform of /(¢) is defined as

0

L{f ()= f(s)= fe"‘ f(e)dt (6.2.1)

provided the_integral on right hand exists. Here s is a parameter, real or complex
and clearly f(s)is a function of s.

'ihverse Laplace Transform Integral

We have L{f (t)} =f (s) , which implies that f (t) =L { ik (s)}, where L and 7%

Respectively, represent Laplace and inverse Laplace transform operations. The

- transformed solutions of many problems yield results not contained in tablés of

~ Laplace transforms. What is needed, therefore is a so called “first-principle
- methoc 0f inverting a transformed solution that can be applied regardless of the







188 PARTIAL DIFFEREN AL WA TS

P16,

s
£(s)==——Lim | L2
2mi P S —2 (6.2,5)

ST e A e e e A A

en replaced by s = x + iy and /' (s) is assumed to b analyy;

where z, has be _
the half — plane Re (s) > V. Applying the inverse Laplace transfory, Ytic i,
sides of this equation, we get On bog,
+if
- z
-6 m [ L
2mi P J §—2Z
y=ip
y+ip
- —Lim J' f(z)L"( )dz
2mi B> §=2
+ip I
=—->Lim Ie"f(s)ds L"( =
2mi P o et
*he dummy variable z has been represented by s.
in general, Laplace transform inverse is given by
1 y+ioo_
fO)=== [F(s)e”ds (625)
2ni . <,

~ for ¢ > 0 and y being a positive constant.

The path of integration in this inversion integral of Laplace transform, 18
often called the ‘Bromwich contour’, since Bromwich first devised this method
of handling certain integrals that arose in operation mathematics. The basic
concept that will underline the actual evaluation of inverse Laplace transforms
by use of inverse integral (6.2.5) is the application of contour integration in the
complex plane. The details of the calculations will depend on the nature 0

transformed function f (S) The numerical technique to evaluate the integrel
(6.2.5) is given in Appendix B.

. Laplace transformation of some important elementary functions and their
inverse transforms are given in Table 6.2.
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6.3 Solution of Partial Differential Equations

A large number of problems in science and engineering involve the
solution of linear partial differential €quations. A function of two or more
variables may also have a Laplace transform. Suppose that u(x, 7) is a function
of two independent real variables x and 7. When Laplace transform is applied
with respect to the variable ¢, the partial differential equation is reduced to et L
ordinary differential equation of the z-transform u(x, s). The general solutionof
ordinary differential equation is then subjected to the boundary condiﬁoﬂ_jg Yo
the original problem. Finally, the solution u(x, ), is obtained by using
complex inversion formula (6.2.2). Thus the Laplace transform is spe

suited to solving initial boundary value problems (IBVP), when conditions ar¢
prescribed at 1 = 0.
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T B=j(s)ea sk /[ea slk -1 s/k]
sinh[ \/E (a- x)J
5 2 k
Therefore u (x, s ) =7 (S ) T
sinh[ %a

Taking inverse Laplace transform, we obtain

sinh[ \/g A X)J-

e, )=l 7o) LM T

=3

6.3.2 Waye Equation

Example 6.3.3 : Using the Laplace transform method, solve the initial
boundary valye problem

azu__ 1 6%

= —;T-COSWf, OSXSOO, OStSOO
o % o
subject to the initia] and boundary conditions

u(0, t)=0, u 1s bounded as x — oo

Solution Taking the Laplace transform of the partia] differential equation, we
obtain

di. 1f.,.

R =7[Szu(x, )-sulx,0)- M5 0)] s

dx* ¢ ot 5%+ w?

Using the initial conditions, we get

dle SZ g

(6.3.10)
5% + @2
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Solution : Taking the Laplace transform of the partial differeny,) &

pet ke
d*i : -SU __0’_9_
¥ i, 8) = su(x, 0) o % 0)

Using the initial conditions, this equation becomes

1 .
ilwi -5 =l ~.s')sm1tx
dx’
Its general solution is given by

" (.r.‘ .\'):-- Ae™ + Be™ + _(S_-;l_)_s_ll_')ﬂ

- T (6.3.12)

The Laplace transform of the boundary conditions gives

(0, s)=0=i(l, s)
Using these equations (6.3.12), we find that
A=0=RB
Hence, we obtain
7(x, 5)= (s - l)smnx
'JI + .S‘

Taking the inverse Laplace transform, we get

. af s-1 . sin 7x
ulx, 1)=sinmx L ——— | =sinnx| cosmx ~
n? 45 n

Hence the required solution of the given boundary value problem is

u(x, t) =sin nx{cosnx L0 nx]
n

Example 6.3.5 : A string is stretched and fixed between two points (0, 0) and (/, 0).

Motion is initiated by displacing the string in the form u =sin(—1;£)and

released from rest at time 7 =

0. Find the displacement of any point on the string
at any time ¢,

Solution : The displacement u(x, 1) of the string is governed by

azu C'2 az

P O<x<l, t>0
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\\'hicl

le 6.3.7 : Using the Lap]
gxamp Place trangf,
method, solve

93_ %u
g

Subject to the initial and boundary conditiong

u(x, O)=30COSS bl Ou
X, U Ea 0]:0,—63(0, t)___o

:on : Taking the Lapla
Golution place transform of partial A _
have partial differential equation, we

st (x, 5)-u(x, 0)=34Z

dx
Using the initial condition, we get
d*n s _ h
—-—u =-10c¢
7 73 0sS5x

Its general solution is given by

7(x, )= 4oV, pofix , 30cosSx
75+ s

Taking Laplace Transform of boundary condition and using in the solution, we
obtain A = B = 0. Thus
il s)= 30cos5x
15+s

Taking inverse Laplace transform, we get

ulx, t)=L" (33_(5255_x] =30e " cos5x
+5

which is the required solution.

64 Fourier Transforms and their Application to Partial
Differential Equations

Joseph Fourier, a French mathemati

FOurier transform in 1801, to explain the §
Since then, it has become a powerful tool in diverse fields of science and

engineering, It can provide a means of solving unwieldy eq“?gom? th:l:. : ::;Elb;
dynamic responses to electricity, heat or light and it can also i e:nr:;flz'e iz i
Contributions to a fluctuating signal, thereby h o Fa transform has
observations in astronomys medicine and chemistry. Fourier

cian, had invented a method ca!led
flow of heat around an anchor ring.
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Example 6.4.5 : Solve the boundary value problem in the pq)y llne |
described by Y > 0,
U, +u, =0, =0<x<®W, y>0

subjected to the boundary conditions
u is bounded as y — oo, u and %% both vanish, as | x| ~ oo,

Solution : Since x has an infinite range of values, we fake the p,
exponentlal transform of partial differential equation w.r.t. the variahje m

ou
use the conditions that « and B; both vanish, as |x| ~» @0, to get

% 1
_ azu(a, y)+ —ﬁ—;_luyyefwdx =1

or
d zﬁ(a, y) 92—
——== —a’ule, y)=0 6.4.6
Its general solution is found to be *
it(o, y)=Ae® + Be™ (64.7)

Because » must be bounded as y— 0, U ((1, y) is also bounded as
y —> 0, implying that 4 =0, for & >0 and B =0, for a < 0. Thus for any a,

i(o,y)= Ce 1oV (6.4.8)

C being a constant.
Now the Fourier transform of the boundary condition yields

(0, 0)=f ()

which upon using in (6.4.8), gives us
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Therefore equation (6.4.11) implies that

ds

’J‘—'-{ o g‘! =(
= Im Acos(.‘:’_v)+ Bm‘n({‘y)

= A= f(E)and B=0
Thus we have

s = F(t)cos(s?y)

Taking inverse Fourier transform, we get

which is the required solution.

Example 6.4.9 : The temperature 0 in the semi-infinite rod 0<x<w is

00 ok
determined by the partial differential equation a— =k p ? and the conditions,
X

(1) 0=0, whentr=0,x 20
(11) 0 =0, when x=0, r>0
Making use of the sine transform show that

0(x,1)= 220 o]s‘“g”‘)(l e

Solution : The given equation is

2 |
LR 6412 |
Ox ot

Multiplying by sin(§ x) and integrating w.r.t. x between the limits 0 to %, We
get ‘
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iy z=0,y>0x=0
y+i®o
[Fe)e as

1
may be written as =

T
o

it f(x)=Fk, k being constant, then evaluate the integral.

Solution : The given equation is
0z _ oz

o

Applying Laplace transform w.r.t. X, W€ get

= z=Aexp( py)+ Bexp(—\/;y)

N -—
ow z—>0as y—>w0=z->0,as y >0

Therefore, A =0 and hence

E:Bexp(— \/;_Jy)
Again z = f(x), when y = 0= 'z'=f(p),wheny=0
— ’ f

/(p)=B

o Z=f(p) e
lakmg nverse Laplace transform, we get

Y+ico 2
=5

1
e TP il 1 22 s e
z:u,_L o= | Ho)emrigp NS
ieo | 0.
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L 2 2
J' 612’+16V+l26V=
LN 4

—rodar+ | —r'dr+ [ 2F
or !6r2 Jér ] dr=
w OV [° sl ¥
bt g IEO ~ls+1)rrf; +S(s+1)6"""'Vdr+r’V:

o0

2 ®©
[ s-1 a s—1
=s|rVdr+— | r''Var=o0
2
w ]

. V
Now in all the physical problems, ¥, 5 =0, r >, therefore

sV + f;/ =0, 7 =?Vr"‘dr
0
- V = Acos(s8) + Bsin(se) 64.15) | @
where A and B are arbitrary constants. Bo
Now V'=f(r), for 0=2a | ;
= I7=J}($)> for 6==a, fls)= If(")"s_ld" ;
g :

Therefore, V' must be on even function of s, hence

/s)

cos(sat

A

B=0and 4=










