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CHAPTER 1 

VARIATIONAL PROBLEMS WITH 
FIXED BOUNDARIES 

-1.~ _ -"T~ec:C~nc:eJ}~ ot Variation and l ts Properties 
As-already:pointedo_uUn the introduction, a variable quantity J[y(x)] is a functional dependent orr·11Iunction-y(x) if tc:reach-functionf (x) belonging-fo-= a certain class of functions G, ~ere fa a,d~finite:vaiu~-~of /. Thus there is a correspondence between a given function y(x) and a number /. , 

By the increment or variation 8y of the argument y(x) of a functional. /, we mean the difference Dy(= y(x) - y1(x)) between two functions belonging to a certain class. A functional / [y(x)] is said to be continuous if a small change in y(x) ·results in a small change in /{y(x)]. This definition is, however, somewhat imprecise since we have not specified what we exactly mean by the phrase 'a small change in y(x)'. In other words, under what conditions should we consider the curves y = y(x) and y = y 1(x) close? 
One way of specifying the closeness of y(x) and y1(x) is to say that the absolute va!ti t> of their difference given by I y(x) - y_1(x) I is small for all J: for which y(x) · and y-;(x) are defined. When this happens, we say y(x) is close to y1(x) in the sense of_ zero-order proximity. But with this definition, the fu~~tional -

I [y(x )] ~ f F(x, y(x ), y '(x)) dx, 
(1.1) 

which occurs in many _a~i~ations, is seldom continuous due to the presence of the argument y'(x). T~'tecessitates the extension of the notion of closeness of the curves y = y(x) and y = y1(x) such that both I y(x) - y1(x) I and I YJ.,Q - y{ (x) I are small for all values of x for which these functions are prescribed .Lwe t hen say that these two curves are close in the sense of first-order proximit/ In general , the curves y = y(x) and y = y1(x) are said to be close in the sense of nth order proximity if I y(x) - y1(x) I, I y'(x) - Yi' (x) I, . .. , I y<n)(x) - y1<
11)(x) I are small for values of x for which these functions are defined. Figure l. l shows two curves which are close in the sense of zero-order proximity but not i--:. the sense of first-order proximity. Figure 1.2 shows two curves which are close in the sense of first-order proximity. It is clear from the ,ibove definitions that if tw0 rurves are close in the sense of nth order proximity , \hen they are certainly, 'close in the sense of any lower order (say , (n- l )th ) proximity. 

. . . We are now in a position to refine the concept of the contmu1ty of a functional. The functional I[y(x) ] is said to be continuous at y = y0(x) , in the sense of 11th 
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Fig .. l.t ·· -Curves· close .in the sense· ~f -. Fig. 1.2 Curves close in the sense of 

zero-order proximity. first-order proximity. 

order proximity, if given any positive number £, there exists a 8 > 0 such that 
I /[y(x)] - /[y0(x)] I < £ for I y(x) - y0(x) I < 8 

I y'(x) - Yo (x) I < 8, .. . , I y(n>(x) - Ycin)(x) I < 8 

Example 1. Show that the functional 

I[y(x)] = { x3[1 + y'(x)]1n th 

defined on the set of functions y(x) E C[O, l], (where C[O, l] is the set of all 
continuous functions on the closed interval O ~ x ~ 1) is continuous on the function 
y0(x) = x1 in the sense of zero-order proximity. 

Solution. Put y(x) = x2 + a71(x), where TJ(x) E C[O, l] and a is arbitrarily 
small. Then, 

l[y(x)] = l[x 2 + aJ)(X)] = J: x3 [I + (x2 + aJ)(x))2]1'2 th , 

Passing to the limit a ➔ 0, we find that, 

lim /[y(x)] = I x·\l + x4
)

112 cf.-:= !Tx 11-
a~ o -'-- 0 -

and this establishes the continuity of the functional on y0(x) = x2. 
It is, however, possible to define the notion of distance p(yi, y2) between two 

curves y = y1(x) and y = yi(x) (with xo ~ x ~ x1) as 

p(y1; y1) = max I y1(x) - yi(x) I (1.2) (.:co Sx Sx1) . · 

Clearly, with this metric, we can introduce the concept of zero-order proximity. 
This notion can be extended to the case of nth order proximity of two curves 
y = y1(x) and y = y2(x) (admilting continuous derivatives upto order n inclusive) 
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if one introduces the metric 

n 
P (Y1, h) = L max \ y(P\x) _ /P)(x) I 

(1.3) 
p= l (xo <;;xs;xi) l 2 Let us now introdu th • . • • 

.._ n '"'"'"" . ce e concept of a linear functional J(y(x)] defined m the 

· .r ··~d _ h~ear space M of the functions y(x). This functional is said to be linear, 

11 n sat1shes 

(i) /[ cy(x)] = cJ[y(x)], 
where c 1s !an arbitrary constant, 

(ii) /(y1(x) + yi(x)) = /[y1(x)) + I(y2(x)), where Y i(x) E M =and yi(x) E M. -Take; for instance, the functional 

J[y(x)] ~ f [y' (x) + 2y(x)] dx 

(l.4) defined in the space C 1[a, b], which-consists of the set of all functions admittin° 

• 

1 

O 

continuous first order derivatives in [a, b). Clearly, I in (1.4) is a linear functional. 
It c~n, however, be shown that a functional J(y(x)) is linear if (a) it is continuous 

and, (b) for any y1(x) E Mand yi(x) E M, satisfies the condition /[yi(x)] + /lyi(x)] = I[y1(x) + yi(x)] -- -Let us now define the _ var_i~tion . of a funrt~o;:1al l[y(x)). The increment Af is 

,~:_given by - · 

.11 = l[y(x) + Dy(x)] - l[y(x)] 
which may be written in the form 

Af = L[y(x), 5y] + J3ly(x), 5y) max I Sy\ 
(1.5) 

Htre, L[y(x), oy] is a functional linear in 8y and ~l y(x), D)l1 ➔ 0 as the maximum 
valu e of [;y (given by max I Dy I) 4 0. This sort of division of the increment .11 
is analogous to the differential, and the infinitesimal, in the case of a function of 
a single variable given by 

L\f(x) = f(x + L\.x) - f(x) 
= A(x) Lix + ~(x, L1x) L\.x. 

(1.6) 
Here

1 
A(x) .1.x, known as the differential df, is the principal part of the increment 

and is linear in Ax. By the same to~~en, the part L[y(x), Dy) is called the variation 
of the functional and is denoted by ol. An alternative definition of the. variation 81 of a functional I can be given. 
Consider the functional ~[y(x) + aoy) for fixt-d y and oy and different values of 
the parameter a. · · _ Now using (1.5) the increment Af can be wntten as '11 = l[y(x) + aoy] - [ly(x)] 

= L[y, aoy) + ~[y, m5y] I al max I oy l. 
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The derivative of J[y(x) + a 8y] with respect to a at a = 0 is 

. M . & . L[y, a8y] + /3[y, a8y] I a I max I oy I hm - = hm - = hm ---"---'--.;.__ ______ _ 
Lla ➔ 0 Lia a ➔ 0 a a ➔ 0 · a, 

L[y, a8y] f3 [y, a8y ] I a I max I 8y I 
= lim --- + lim 

a ➔ O a a ➔ O a 

= L[y, oy] = 81, 

since by linearity L[y, aoy] ~ aL[y, By] and f3 ➔ 0 as ~ -::J. 0. Hence the variation 

of £! function&J[y(x)] is equal to 

a . ~-C- • 

ja l[ y(x) +,a8y] at a-~ 0. 

Definition. A functional J[y(x)] attains a maximum on a curve y = Yo(x), if the 
values of J on any curve close to y= y0(x) do not exceed J[y0(x)] . This means that 
Af = J[y(x)] - / [y0(x)] ~ 0. Further, if Af ~ 0 and Af = 0 only on y = Yo (x), we 
say that a strict maximum is attained on y = y0(x). In the case of a minimum of 
I on y = y0(x), M ~ 0 for all curves close to y0(x) and a strict minimum is defined 
in the same way. . 

~ Theorem. If a functional J[y(x)] attains a maximum or minimum on y = y0(x), 

[{~ where the domain of deffnitlon belongs to certain class, then at y = y0(x), 
,'.)~ 

81 = 0. (1.7) 

Proof. For fixed y0(x) and 8y, I[y0(x) + aoy)] = P(a) is a function of a and this 
reaches a maximum or minimum for a = 0. Thus lf'' (O) = 0 leading to 

Ja l[yo(x) + a8y]la;:o = 0, i.e., 81 = 0. This proves the theorem. 

However, when we talk of maximum or minimum, we mean the largest or 
smallest value of the functional, relative to values of the functional on close-lying 
curves. But we have already seen that the closeness of curves may be understood 
in different ways depending on the order of proximity of the curves. 

If a functional J[y(x)] attains a maximum or minimum on the curve y = y0(x) 

with respect to all curves y = y(x) such that I y(x) - y0(x) I is small, then the maximum 
or minimum is said to be strong. 

If, on the other hand, l[y(x)] attains a maximum or minimum on the curve 
y = y0(x) with respect to all curves y = y(x) in the sense of first order proximity, 

i.e., I y(x) - Yo(x) I and I y'(x) - Yo (x) I are both small, then the maximum or 

min imum ,is said to be weak. It is quite clear that if a strong maximum (or 
minimum) of a functional I[y(x)] is attained on the curve y = y0(x), then a weak 
maximum (or minimum) is also attained on the same curve. This follows from 
the fact that if two curves are close in the sense of first-order proximity, then 
they are definitely close in the sense of zero-order proximity as well. 

This theorem can be readily extended to functionals dependent on several 
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b f 

. • b ions, or dependent on one or several functions of any num er 0 

vana les , e .g., 

I /[y1 (x)_, Y2(x), . . . , Yn(x)] /[ ( )] Or Z X1, X2 , ••. , Xm 
or 

/(z1(X1, X2, · · ., X ) Z (x ) ( X )] 

m , 2 !, X2, .. . , Xm , . . • , Zp Xi, X2, . • ·, m • h . n ition or extremum, m all these cases, 1s still, given by ul = , 

\ 
The necessary co ct · · f . . . • s: o 

I Vv ere the vanaf s: · d ·. · . 
. 

; .' _ 1 [y(x)]. : ion u is . ef1_!1ed m ex~ctly the same _way as that for a functional 
· \ S . \~~.D)_, ..,12 l= G4 ~·r- ~ ,xj'n ;fo·, Ven· 1 ~Ti onc.J pyo.t:,jQ.fn 

, & s-m 'J -~,..-.l..,.,, I 
l 

I C\ . , · ':> ~ UL Clnc p,-,ovQ ELL <2, IS' ~ n '. · \ /'-7 ~ 1.2 _Eule~ s Equation >Jo¼ r> :f'UJ) ction . . ;,m<a,.r -' 
: \;,'-\ '1 ~ Gt us examine the extiemum of the functional I 1\ 

Jb \ \ 
I[y(x)] = a F(x, y(x), y'(x)) dx 

(1.8) 
\ ' 

\ ' 

~ ' 

I' 

' I • 

. \ ' 
:l ;' : 
. I LI , (i 
•i I Ii 
\: 'ii i, I 
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l 

l 

' . 

I 

subject to the boundary conditions y(a) = y1 and y(b) = y2, where y1 and y2 are 
prescribed at the fixed boun,dary points a and b. We assume that F(x, y, y') is three 
times differentiable. We have already shown that the necessary condition for an 
extremum of a functional is that its variation must vanish. We shall now apply 
this condition to (1.8),. and assume that the admissible curves on which an extremum 
j s ~chieved; ad1:llts o~ continuous ~rst-?rder ~erivativ~-qlt c.an bep1~ve'd, however, 

: that the curve on which an extremum 1s achieved, aclrriits of a contmuous second-
orde_r derivative also (see Section 1.9). 

_ 
U,et y = y(x) be-the curve which extrernizes the functbnal (1.8) such that y(x) 

is twice differentiable and satisfies the above boundary conditions (see Fig. 1.3). 
Let y = y(x) be· an admissible curve close toy = y(x) such that both y(x) and y(x) 
can be ircluded in a one-parameter family of curves 

y(x, a) = y(x) + a[y(x) - y(x)] 
(1.9) For a = 0, y(x, a) = y(x) and for a = 1, y(x, a) = y(x) . , The difference y(x) - y(x) is the variation 8y of the function y (see Fig. 1.4) 

and is similar to the role played by Ll.x, the increment in x while considering the 
extrema of a function fi x ). Now on the curves of the family ( 1.9), the functional 
(1.8} reduces to a function of a, say 'f'(a). _Since th~ extrernizing curv~ Y_ = y~x) 

corresponds to a= O, it follows that 'f'(a) 1s extrem1zl,d for a= 0 . This implies 
that 

(d'f') -- =0, da a= o • . (1. 10) 
where 

'f'(a) ~ f F(x, y(x, a), y'(x, a)) dx 
(1 .11) 

I ~ v 
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Y1 ·Yi 

· y , Y2 ·-

'· 
o' Q . : b X 0 - · · · . x, 

. Fig. l.3 . Exfremizing curve joining two , . -Fig; -1.4 - Extremizing curve and an 
fixed points. admissible curve between 

two fixed points. 

Using (1 . 9) and ( 1. 11 ), it fo llows that 

'¥ '(a) = f [F,(x, y(x, a), y'(x, a)/ 8y + F,,(x, y(x, a ), y'(x, a))8y'j dx (1.1 2) 

where a subscript denotes partial derivative with respect to the indicated variable. 
Further, the variation 8y( = ji(x) - y(x)) is a ~unction of x and ean_ b·~ 

- differentiated once, or several times, such. that(~)' = y'(x) - y'(x) = 8y'. Finally, -- - --- (l.fo) gives from (1.12). the r'elation ' , 

b . I [Fy(x, y(x), y' (x))oy + Fy, (x, y(x), y' (x))oy'] dx = O (1.13) 

Let us integrate the second term by parts subject to !he boundary_ consfitions 
(8y)0 = .0 and (8yh = 0 (as a consequence of y being fixed at x = a and x = b). 
Thisr gives from (1.13), 

(1.14) 

In view of the assumptions made on F(x, y(x), y'(x)) and the extrernizing 
curve y(x), it follows that Fy - ! Fy, on the curv~ y(x) is a riven continuous 
function , while oy is an arbitrary continuous function, subject to the vanishing of 
8y at x = a and x = b. 

Before proceeding further, we now prove the following lemma: rrf for every 
continuous function 1J(x), C r ,P(x)1)(X) dx = 0 

. a 
(1.15) 

where <P(x) is continuous in the closed interval [a, b], then <P(x) = O on [a, b]. 
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- t = r in a ~ x :;; h. 
Proof Assume th at <P(x) c/; 0 (pos itive, say) at a pom x ·. , . . positive 

tr,"' ) o and mawtams 
By virtue of the continuity of <J)(x), it follows that < /\ .x :t . ·b'tr·iry 

. . - s· , 7J(X) IS an al I ' 

sign in a small neighbourhood x0 $ x ~ x1 of the pornt x · · mce . . ·t· c in 

- . J ( ·) remains posi ,v 
contrnuous function, we might choose 77(x) such t iat 77 x f JJ . f ·oi n 

I ,. I '1) It tlll:Jl O ows I 

xo ~ x ~ x 1 but vanishes outside this inlerval (sec ·1g . ·- · 

( I .15) that 

J/J Jx' 
a <J)(x)ry(x) ~ = xo <P (x) 17(x) dx > 0 

(1.16) 

since the product <P(x) 17(x) remains positi ve everywhere in [xo, xi] . The contradiction 

between ( I. 15) and (1 .1 6) shows that our original assumption <P(x) :;t. 0 at some 

point x mu st be Wrong and hence <P(x) = 0 on [a, b]. 

y 

0 
a x x1 f X 

Fig. 1._5 A C(?n tinuous function which is positi_~e in an interval but vanishes 

outside. 

Invoking this fundamental lemma; and from (1.1 4) we conclude, that 

I d F -- F , =0 
I y dx y 

( 1.17) 

on the extremizing curve y = y(x). This equation is known as Euler's equation and 
"-.l..... - --- -

the integral curves of this equation are known as extremals. It should be noted that 

the functional (1 .8) can attain an extremum only on extremals . On expanding 

( 1.17) we find that 

F - F , - F ,y' - F ,.1y11 = 0 
Y xy YY YY 

(1.18) 

which is, in general, a second-order differential equation in y(x) (although some­

times it may reduce to a finite equation). The two arbitrary constants appearing 

in the solution y(x) are determined from the boundary condi tions y(a ) = y
1 

and 

y(b) = .>'2 -

It should be emphasized, however, that the existence of the solution of ( 1.17) 

satisfying the above bou~dary conditions cannot always be talcen for granted and 

even if a solution exists, it may not be unique. However, in many problems' the 

existence of a solution is evident from the geometrical or physical significan~e f 

the p~oblem. He?~e in su_ch ca~es, if t~e .existence .of solution of Euler's equatiin 

is umque, then this solut10n will provide the solut10n of the variational problem. 
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Solution. Before 
functional t b we embark on the solution, it may be noticed that the may e recog · d . 
y == y(x) fro . nize as the time spent on translation along the curve m one point to a th .f x. This is due t th no er, 1 the rate of motion v = (ds/dt) is equal to s· O e fact that ds = (1 + y'2)1l2 dx 

mce the functional · · d · 
, is m ependent of y, Euler's equation leads to 

y = C1x(I + y'2) 112 
Th. · (1.20) 

is may be integrated b . . ' . 
. Y mtroducmg y = tan t, t bemg a parameter. Then (1 .20) gives x = (llC1) sin t - C . Th 

. . .. _ - 1 sm t. en 
. . 

dy = tan t dx = cl sin t d;, 

wh_ic~ on integratj~~ leads to 
(1.21) 

Y = - C1 cos t + C2 
Elimination of t fro th . 

m e expressions for x and y then gives the extremals as 
x 2 + (y - C2)2 = c?, 

which is a family of circles. 

(iii) F in (1 .8) is dependent on y and y' only. In this case Euler's equation reduces to . 

But 
- d 

(F y'F ) - F I+ F II . 11p' F ,2 F II I dx - l - yY /Y - :Y y' - yy'Y - y'y'Y y 

= y'(Fy - Fyy,y' - Fy'/Y11
) 

Thus by virtue of (1.22), Euler's equation has the first integral 

F - y'Fy, = Ci 

(1.22) 

(1.23) 

where, C1 is a constant. This equation may be integrated further after solving for 
y' and · separation of variables . 

, ~ Example 5. [!ind the curve joining given points A and B whic~ is traversed by I ] t_ 0--,')~ a particle moving under gravity from A to B in the shortest timj(ignore fricti on 
I ; ~e-along the curve and the resis_tance of the medium). This IS known as the I ! ~ ':t:- Brachistochrone problem to which we have alluded before. 1 ! ~ 
i : ...... ., _' -~ -~ -- Solution. Fix the origin at A with x-axis horizontal and y-axis vertically 

downward. The speed of the pruticle dsldt is given by (2gy) 112 , g being the 
accel eration due to gravity. Thus the time taken by the particle in moving from 
A(O, 0) to B(x1 , Yi) is 

• JXJ ✓1 + y' 2 
t[y(x)l = k o {y dx; 

(1.24) 

( 

- \ 
' i 

. I 
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~' ,:. . .\ ~hich is a family of cycloids with C1/2 a'i the radiu·) <1/ th(: r<, llH,1: (,~ r,1 ,J{,i '1'::.:t:{,1.. J 
.'.3 "· 1 C1 is determined by the fact that the cyc;lnid pa·, ~e'i thr<J U/~ ri 1:r 1 1 .• ; , ; . 

C J)t\'1-~ (... .... ,,-. 

-c/( t () Example 6. Find the curve with fixed boundary pcJint 'I ·, uch that it·, r r1t;1t1 r;n al-:,,,ut 

\

Y the axi s of absci s~ae give ri se to a <i urfact.: <if rcv<;]utirm ,;f mI11JHJ IJffi ·,orf ;v-✓': 2,rr: 4 _ ./1(1 v~,_,,,.,.,_, _,- '/' ; / .,,,... / 
\ ·f_)~ ff'•(1XJJ(,u;..r(" • I r,,f f' I~ ? 

';,f" Solution . The area of the <i urface <Jf re v<iluti<Jn (f-i;_: . J r1; 1·. -

,\]y( xJJ = 2n I' y,j l +-y, 2 dx 

where the end points A and /J rJf the cJrvc y = y(xJ hc1 •1e 1-u1<,rdin;:.t.t·. ,:, , and 
x2. Since the integrand i~ a fun ctir1n <Jf .1 and y' rm ]:; , a fir ·! i~it';ir~! r1f F-, ,~J,;r ' ·. 
equation is 

, 2 y-P- fY = C1 
,jl+ y' 2 

which reduces to yl,p = C1 . To integrate this equati<Jn , 'Jlt put /= '.inh 1, 

Then, clear! y, 

y = C1 cosh t, 
dy . 

dx =, = C1 dt 
y 

The second equation of (1.28) gives on integration the reh1ti<Jn 

X = c,t + C2 with y = c, cosh t < I 29J 
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y 

B 

I . 
I 

X 

I • . 

Fig. 1.6 Surface of revolution with minimum -;urface area. 
The elimination of t from ( 1 .Q9) gives as extremals 

X - C2 y_=:= C1 cosh C - · l 

which constitutes a two-parameter family of catenaries. The constants C 1 and C2 are determined from the conditions, that the given curve passes tfilough the given points A and B. 
. As a last example of the extremum of a functional, we consider the following problem of gas dynamics. 

~ Example , . To determine the shape of a solid of revolution moving in a flow ,s;'-f' of gas with least resistance. 

Solution . Referring to Fig. 1.7, assume that the gas density is sufficiently small such that the gas molecules are mirror reflected from the surf ace of the solid. The component of the gas pressure normal to the surface is 
p = 2pv 2 sin2 0 

(1.30) where p, v and 0 denote the density of the gas, the velocity of the gas relative to the solid, and the angle between the tangent at any point of the surface with th direction of flow. 
e The pressure given by ( 1.30) is normal to the surface and one can write dowh the force CO!J1ponent along the x-axis acting on a ring PQ of width ds ( = ✓ 1 + y' 2 dx) and radius y(x) in the form 

dF = 2pv 2 sin 2 0 • [2,ry✓l + y' 2] sin 0dx 
0 .3 1) 

I 
'· 

i . 

.. 
I • _-
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Direction of 
g.as fl ow. 

y 

, I 
I . 

I • 

14"t------: -l - --, -

Fig. 1.7 Solid of revolution experi.encing least resistance in a gas flow. 

Hence the total force along the x-direction is 

F = I: 4irpv2 sin3 8· ✓1 + y' 2 y tb 

To make further progress, we assume 

• 0 y' I 

sm = (1 + y'2)312 ""Y 

where the slope y' is taken to be small. Thus from (1.32), the total resistan~e 
experienced by the body is 

F = 4irpv2 I: y" y dx (1 .33) 

The problem now is to find y = y(x) for which F is minimum. Thus ( 1.33) 
constitutes a variational problem with the boundary conditions 

y(O) = 0, y(l) = R (1 .34) 

Since the integrand in (1.33) depends on y and y' only, a fir~t integral of 

Euler's equation is 

' y,3. - 3 Jj_ (yy ' 2) = 0 
dx 

Multiplying ( 1.35) by y' and integrating, we get 
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C1 being a constant. One more integration gives 

y = (C2x + C3)314 

Using the boundary conditions (1 . 34 ), we obtain 

R4l3 
C2 = - l - , 

Thus the required functi9n y(x) is given by ,,... . . -· 

-

If f in :o.8) isJ inear in' ; , su~h th~t :·· · . · -· · · ·- . . . .. . - . -- . . 

F(x, y, y' ) = M(x, y) + N(x; y)y' 

then Euler' s equation reduces to 

cJM _ JN _ O ay ax - , 

(1.36) 

which is-a finite equation, and not a differential equation . Thus the curve defined by the above equation does not, in general, satisfy the boundary conditions at x = a and b. Clearly, in this case the variational problem (1 .8) does not have (in -general) a solution _in the class of continuous funct1or;s. The reason for this lies in the fact, that, when the above equation holds in some domain of the xy-plane, then the integral 

I[y(x)] = r F(x, y, y') dx = r (M dx + N dy) 

L ., _ <.J,nes independent of the path of integration. Thus the functional is the same on all admissible curves leading to a meaningless variational problem. 

1.3 Variational Problem for Functionals of the Form 

f F(x, yi(x), y2(x), . . . , y,(x), y{(x), )'2(x), .. . , y;(x)) dx, 

where the function Fis differentiable three times with respect to all its arguments . To find the necessary conditions for the extremum of the above f Jnctional 
' 

we consider the following boundary con~itions for y1(x) , Y2(x) , ... , Yn(x): 
y1(a) = Y1,_yi(a) = Y2, .. . , yn(a) = Yn 

Y1(b) = Zi, Y2(b) = Zi, ... , Yn(b) =~Zn 

where y1, y2, .. . , Z1, Z2 ... are constants. 

(1 .37a) 

(1.37b) 

We vary only one of the functions yj(x) (j = 1, 2, ... , n), keeping the others fixed. Then the above functional reduces to a functional dependent on, say, only 
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one of the functions Yi(x). Thus the function y/x) having a continuous derivative 
must satisfy Euler' s equation 

d 
FY; - dx Fi= 0 

where the boundary conditions on y;(x) at x = a and x = b are utilized from (1 .37a) 
and (1.37b). 

Since this argument applies to any function y/x) (i = 1, 2, ... , n), we obtain 
a system of second-order differential equations 

d . 
Fy. - - Fy;, = 0 

I dx I 
(i = l, 2, ... , n). (1.38a) 

These define, in general, a 2n-param~ter f ~mily of cur-ves- in the space ,- • 
x, Yi, Y2, -.. . , Yn and provide the family of extremals for the.-giver{ variational -· . 
problem. 

Let us illustrate the above principle by considering a problem from optics. 

Example 8. Derive the differential equations of the 1i1nes of propagation of light 
in an optically non-homogeneous medium with the speed of light C(x , y, z). 

Solution. According to well known Fermat's law, light propagates from one 
point to another point along a curve, for which, the time T of passage of light will 
be minimum. , -

- -If the equation of the desired path of the light ray be y ~ y1_x) and z = z(x); 
then clearly, 

J
x2 ds f x2 ✓1 + y'2 + 2 ,2 

T = - = ----dx 
C C(x, y, z) X ] X ] 

where '.is is a line element on the path . 
Using (1.5) , one gets the system of Euler's equations 

----- - + - - ===== - 0 
✓ I + Y, 2 + z, 2 ac d [ Y, ] 

c2 ay dx c✓ 1 + y'2 + z ' 2 -

✓ 1 + y'2 + z'2 JC + _4_ [ z' . ]- 0 
c2 J z dx c✓ 1 + y'2 + z'2 -

which determine the path of the light propagation. 

(1.38b) 

It should be noted, however, that in the above form, the principle cannot 
always be applied. Let P1 be the centre of a hemispherical mirror. The length of 
the path of tli.e ray emerging from PI and reflected by the mirror at its pole p to 
a point p2 on the straight line pP1 will be longer than the path P1QP2, consisting 
of two rectilinear segments QP2 and P,Q, corresponding to a reflection by the 
mirror at a point Q distinct from p. This difficulty can be circumvented hy removing 
from the formulation the specific mention of fixed end points. A better formulation 
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18 Calculus of Variations with Applications 

is ~s follows: A curve can represent the path of a ray of light if and only if, each 
pomt Pon I', is an interior point of a segment p

1
p

2 
of I'which possesses the property 

that the integral (1 .38b) for T taken along the segment P
1
P

2 
of r has a smaller 

value than that taken alonp any other curve of light from a point source P1(t1, X1, 
Y1, Z1), After a given time 10, such a disturbance will be seen on a surface F(To) 
which, according to Fermat's principle, is such that each point Pz(t2, x2, Yz, Z2) is 
joined to P1 by an extremal for which the integral ( 1.38b) takes the value To, this 
value being common tq all points of F(T0). The surf ace F(T0) is a Wt!Ye froni ;md 
for vario~s values of T0, a succession or family of such wave_ front§ is _obtained. 

One can sh()w•~~tthe frunil-y_Q_f wave fropts_ correspondi_ngJ9 the emission 
from a point source -afP1- is -fdyntical to the family of concentric-geodesic spheres 
centred at P 1, a ' problem of t]le calculus of variations· and determined by the 
integral (1.38b). 

Remark 1. Certain interesting results _follow if we consider the problem of 
propagation of a light ray in an inhomogeneous two-dimensional medium with the 
vel0city of light, proportional toy (see Fig. 1.8). In th is case the light rays are the 
extremals of the functional , 
a~· f b (I + y'2) 1/2 _ · 

• rJ.0f) /Iy(x)J = dx 
V a Y 

Here the integral of Euler's equation gives y(l + y ' 2) 112 = C1 , whose integration 
leads to -· 

Fig. 1.8 Path of light ray propagation in an inhomogeneous medium. 

This is a family of circles centred on the x-axis. The desired extremal is the 
one which passes through given points. This problem has a unique solution, since 
only one semicircle· centred on the x-axis, passes through any two points lying in 
the upper half plane. 
I Consider the curve?· The o~tic,.il p~th length q is the time T(q), during which 

the curve is traversed with velocity of hght v&t,...y) = y. It may be shown that one 
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end of the part AD of the semicircle q, which lies on the x-axis, has an infinite 
optical path length. Hence we call the points on the x-axis as infinite points. We 
shall consider the . semicircles with c... ntres on the x-axis to be straight lines, and 
the optical path lengths of the arcs of such semicircles, to be their lengths, and 
the angles between the tangents to the semicircles at their intersections to be the 
angles between such straight lines. Thus we derive a flat geometry in which many 
of the postulates of ordinaryg~metry remain valid. For example, only one straight 
line can be drawn thro.ugh two points_(only_ one_ s.emi.::circk centre_d on_the x::axis _ · 

. can: be drawn thfqugh-two points on the· se~icir.cle). T~o-straight "lines willire 
deemed as parallel if they have a common point at infinity (i .e~, two semicireles 
touch each other at a: certain point B lying on the x-axis-as shown in- Fig. 1.9).: --~ -
Further it is -possible t~I ~raw-through~ a i i_ven PQJEt 1, ~9t _ ly~~ ?_~ t~e sl!~g~t · J 

line q, two straight lines q1 arid q-z-p~rallel to ii . . . .. 

y 

Fig. 1.9 Optical path in an inhomogeneous medium. 

We have thus obtained an interesting new geometry, which is called the 
Poincare model of Lobachevskian geometry in the plane. 

Remark 2. The foregoirrg remarks at once lead to the question of the possibility 
of drawinl)' an extremal through just any two points with distinct abscissae. An 
answer to ~his question can sometimes be found from the following theorem due 
to Bernstein [14) (proof omitted): 

Consider the equation 

y" = F(x, y, y'). (1.38c) 

If F F and F are continuous at eacl; end point (x, y) for every finite y' and if 
' y I . 

there exist a constan t k > 0 aod functmns 

a= a(x, y) ?:. 0, 

bounded in every finite portion of the plane such that 

Fy(x, y, /) > k, I F{x, y, y') I 5 ay'2 + /3, 

~ 
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then one and only one integral curve y = ¢(.x) of ( 1.38c), passes through any two points (a, A) and (b, B) of the plane, with distinct abscissae (a i' b ). 
Consider, for example, the functional 

I = f e - 2y 2 (y '2 - 1) dx 

Its Euler equation is 

y" = 2y(l + y'2) 

Since F(x, ·y; y') = 2y(l + y'2) , we have 

FY = 2(1 + y'2
) ~ 2 = k and, fu rther, 

. . 
- -I F.(x, }'i: y ') I -~ I 2y(l + '/ 2) I ~ 2 I y I y'2, + 2 i y I . 

so that ex = f3 = 2 I y I ~ O. Hence by Bernstein 's theorem, there exists an extremal through any two points with distinct abscissae. 
On the other hand, it can be shown that it is not possible, to draw an extremal of the fm,ctional 

J[y(x)] = f [y2 + ✓1 + y'2] dx 

through just any two points of a plane having distinct abscissae . 

.Jfl 1-/Functionals Dep:nde~t on ~igher-Orde~ Derivatives ti Y~..- ~ ·. ·;J)a·r1vt2., et-1 le., - Pol~ QCjrJ. 5 ~ Let us no~ consider the extremum of a functional of the form 

'-J . \J . ·r L F(x, y(x), y'(x), . .. ,y<n)(x)) dx, (1.39) 

where we assume F to be differentiable n + 2 times with respect to all its arguments . The boundary conditions are taken in the form 

( ) 
_ '( ) _ 1, 1(11-l)( ) _ (n-1) Y x o - Yo, Y x o - )o , • • • , ) x o - Yo , 

( ) 
_ '( ) _ , (11-l)( ) _ (11-l) Y X1 - Y1, Y X1 - YI , · · ·, Y X1 - Y1 · 

(1.40a) 

(1.40b) 
This implies that at the boundary points the values of y together with all their derivativ~s upto the order n - 1 (inclusivt) are prescribed. We further assume that the extremum of the functional I is attained on a curve y = y(x) which is differenti,.tble 2n times, and any admissible comparison curve y = y(x) is also 2n times differentiable. I~ is clear that bothy= y(x) and y = y(x) can be included in a one-parameter family of curveis 

y(x, ex) =) (x) + ex[y(x) - y(x)] 

such that y(x, a) = y(x) for a = 0 and y(x, a) = _y(x) for a = 1. 
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Now on the curves of the above family, the functional (1.39) reduces to a 
func tion of a, say, lJ'(a). Since the extremizing curve corresponds to a == 0, we 
must have lJ'' ( a) == r at a == 0. This gives, as in Section 1.2, for an extremum, 
the relation 

[ d~ f F(x, y(x, a), y'(x, a), ... , yM (x'. a)) da L 
0 

~=f (F y 8y ri,, .,;, • .:: + F;,.; &}"!) jy = O · . . - --- -- (I,~1) 

-Jritegrate by. parts the ~_econ~d-term-on· thi.rightJiand~ide-once -and the- third 1erm -
twice, __ yielding' . . . --- - -C • • - - • • 

f F,, 8y'dx = [F,, SJ]! - f ( ! F,, )8y dx 

f F, .. 8y" dx ~ [F, .. SJ'J! -[ ( ! F,·H: + f (!', F, .. ) 8y dx 
and so on. The last ~erm on the right-hand side of (1 .41) can be written by 
successive integration by parts as 

b . -- , - b 

f F ~.(n) d _ [F ~.(n-l) ] b [( d F ) -~.(n-2)] 
a y<n) vy X - y(n) vy a -:: - di ytn) vy a 

nfb(dn ) + . .. + (-1) 
0 

dxn Fy(nl 8y dx 

By virtue of the boundary conditions (1.40a) and (1.4Gb), the integrated parts in 
all the above expressions on the right side vanish. Thus from (I .41 ), we find that 
on the extremizing curve 

f b ( - d d 2 d 1
' ) Fy - - Fy, + -

2 
Fy" - ... + (-Jt - F ,en> oy dx = 0 

a dx dx dx 11 
·' 

for an arbitrary choice of oy. Due to conditions 9f continuity imposed on F, the 
fi rst factor in the foregoing integral is a continuous function of x in [a , b]. Thus 
invoking the fundamental lemma of Section 1.2, the function y == y(x) , which 

extremizes I satisfies 

d d2 n dn _ 
Fy ,- dx Fl + dx 2 Fy" - .. . + ~1~ dxn Fy<iil - 0 ( 1.42) 

• • -~ fY) ~·~ 
which is known as the Eul~r,=f~1sson e uat10n.J 

Clearly this is a dtf eren quat1on o the order 2n and hence its solution 
involves 2n arbitrary constants . These are found by using the 2n bo11ndJry 

conditions (1.40a) and (1.40b ). 
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Exp,mple 9. 
~;'\ Determine the extremal of the functional 0f' 

subject to 

y(- l) = 0, y' (- l ) = 0, y(l) = 0, y'(l) = 0. 
SolU:t!on. _ ; .. This· yariational pro bl€~- arises in _finding the axis ~f a flexibly bent cylindrical beam· clamped at the ends. If the beam is homogeneous, P andµ are constants. Then Euler-Poisson's equation (1.42) bec·omes 

-'-p + d2 (µy".) . ~ 0 . d.x 2 . - . 

whose solution satisfying the prescribed boundary conditions is 

y = - 2: µ (X4 - 212 X'L + /4) 

1.5 Functionals Dependent on Functions of Several Independent Variables 
I~ the variational problems, considered so fa r, Euler' s equations for determining extrenials, are ordinary differential equations. We now extend this to the problem 

--- -· uf determining the extrema of functionals involving multiple integrals leading to one or more partial differential equations. Consider, for example, the problem of fin ding an extremum of the functional 

J[u (x, y) ] = ff F(x, y, u, ll x , u y) dx dy (1 .43) G 

over a region of integration G by determining u which is continuous and has continuous derivati ves upto the second order, and takes on prescribed va lues on the boundary of G. We further assume that F is thrice differentiable. Let the extremizing surface be u = u(x . y) so that an admi ssible one-parameter surface is ta ken as 

u(.r , y, a) = u(x, y) + CtT/ (X, y) 
where T] (x, y) = O on the boundary of G. Then the necessary condition for an extremum is the vanishing of the fi rs t variation 

8 J = (~ J[u + a711) df:X a =O 
This implies from (1.43) 

ff (Fu_ry + 0_,x 11 x + F;'. -" 1~ _-'.) dx cfy = () ( 1.44) G 



Variational Problems with Fixed Boundaries 23 

which may be again transformed by integration by parts. We assume that the 

boundary I' of G admits of a tangent, which turns piecewise continuously. Then 

using the familiar Green's theorem, we have 

II (T/ ,F,, + T/_y F, ) dx dy = L T/(F,, dy - F,, dx) 

-ff ~ux F,, + rF,,) dx dy 
G - - . 

Thus from ( 1.44 ), 

ff [F,, - r F,'. - i F,} dx dy + Ir ry(F,, dy - F,, dx) = 0. 
G· - . 

Since T] = 0 on I' and the above relation holds for any arbitrary continuously 

differentiable function TJ, it fo llows from above that by using the generalization 
I . -

of the :i.undamental lemma of Sect10n 1.2 that 

J J 
F;, - dX Fux - dy F;,Y = 0 (1,45) 

The extremizing function u(x, y) is determined fro m the solution of the second­

order partial differential equation (1.45) which is known as Euler-Ostrogradsky 

equation. If the integrand of a functional J contains derivati; es of order higher . 

than tw·o~ then by a straightforward extension of the· above analysis , we may 

derive a modified Euler-Ostrogradsky equation for determining extremals. For 

example, in the case of the functional 

J[u(x, y)] = ff F(x, y, u, Ux, Uy, u xx , ll xy, ll yy) dx dy 

G 

we get the equation for extremals as 

F, d F, d F J 2 F + _}_!:_ F + E F, = 0 
U - T u - .:},, 11 + - 2 11 ::, .:}, , u 2 u 

OX x uy y dX .u OXuy ,xy dy YY 

~ . 
--- .:,1 -,; ·r:1 ~1hr r u..wi. 001 Q..in h(,1 ~ 

cl ,? Example JO. [ Find the Euler-Ostrogradsky equation for 
s ~ \) .'J -1'. 

x~ ff [(Ju)
2 1 

Ju)
2

] (j:;,! 1cJ fi u(x, y)] = Jx + l dy dx dy 

D 

where t-he values of u are prescribed on the boundary I' of the domain D. 

Solution. It clearly follows from (I .45) that the equation for extremals is 

r7 2 - a 2u + a 2u = 0 ( l. 46) 
y u - ax 2 Jy2 , 
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</> (x(t), y(t), i

(I), y(I)) dt, 
to 

w
here ¢ satisfies the hom

ogeneity conditio
n ( 1.49). L

et us no
w

 consider a ne
w

 
param

etric representation 

r =
 ((t)(((t) i= 0

), 
x =

 x (r), 
y =

 y
(r). 

T
h

en 

rj>(x(t), y(l), ,i(t), y(t)) dt 
=

 
<p(x( r), y( r), x r( r)t; (t), y

e( r) ( ( r
)) !_l_r . 

J
IJ 

Jrt 
. 

. 
I() 

ro 
! 

B
ut sin

ce 
</> is a hom

ogeneous function o
f first degree in .x and 

y
, 

. 
. 

. 
</J(r, Y, .i: r S, Yr O

 =
 (¢(x, Y, -tr, )

1r)-

T
his giv

es fro
m

 the abov
e equation 

J
1

1 
Jr

1 

¢
(.r, y, .X

1 , )
11 ) dt =

 
</>(x

, y, x r, Y
r) d

r. 
10 

r0 

Thus the integrand rem
ains unchanged w

ith a change in the param
etric represen

tation. 

1
12 

f
or exam

ple, the. area bounded by a closed curve given by 
(.ry -

yx) dt 
is a 

11 
function

al w
h

ich can be P,Ut in the form
 

f 12 

ffx
(!), y(t)l =

 
cJ)(x,y, x,y) dt, 

i, 

. 
I 
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w
here <Pis a hom

ogeneous function of degree CJne in x and y. Thus to find extrem
als 

for I, one has to solve E
uler's equaticm

s 

<P,. 
-
~ cpi =

 0, 
d 

(f) j' -
dt cp:; =

 O
 

( 1.50) 

H
ow

ever, these equations are not independen
t, becau

se the~e m
u

st be sati sfied by 

a certain solution x =
 x(t) , y =

 y(t), and any other pairs of functions w
ith a differen

t 

param
etric representation of the sam

e curve, w
hich, in the case of E

uler's equations 

·· being indep.endent, w
ould conflict -i,vith the theorem

 of existence and uniqueness 

of a solution of a system
 of differential equations. Thus w

e conclu
de that in 

(1
.50

}, any one equation is a consequence of the other and to fi nd the extrem
als, 

· · oi:ie has _to solve any one of the equations (1.50) along w
ith the equation .x 2 +

 y2 
=

 l, 

w
hich show

s that the arc length of the curve is taken as the param
eter. 

T
he W

eirstrassian form
 of E

uler equations (1. 50) is 

-
(p

xy -
cpyi 

r 
-

<Pi(x
2 +

 j2)312 
(1. 51

) 

w
here r is the radiu

s of curvature of the extrem
al and <P

1 is the co
m

m
on value 

of the ratios 

· 2 
· 2 

.. 
</J I =

 </J ii / Y
 

=
 </J y/ X

 
=

 -
¢ x/ X

)! 

For exam
ple, in findin

g the extrem
als of 

J
/1 

I[ x(t), y(t) ] =
 

[(x
2 +

 y2)
112 +

 a
2(xy -

yx) ] dt 
ro 

w
e first notice that the integrand <P (x, y, x, y) is hom

ogeneou
s of degree one. 

U
sing W

eirstrass fonn of Euler equation
s, w

e find that 

F
. -

a
2

 
X

)' 
-

' 
F

 
-

_ a
2 

yx 
' 

l 
Fi =

 -
--2 ~

. 2)3/2 
(x 

+
 y 

give 
1/r =

 2a
2

, 
w

hich show
s th at the extrem

als are circles. 

, 
1.7 

Som
e A

pplications to Problem
s of M

echanics 

H
am

ilton's P
rinciple 

( 1.52) 

O
ne of the m

ost fundam
ental and im

portant principles of m
echanics and m

athem
atical 

physics is the principle of least action due to H
am

ilton (W
illiam

 R
ow

an H
am

ilton 

(1
805-186?), an Iri sh m

athem
atician, also know

n for his invention of quaternions). 

U
sing fh is principle one can deduce the basic equations governing m

any physical 

phenom
ena. Let us form

ulate the principle for a dynam
ical system

 of particles and 

begin by considering the case of a single particle. 

[W
e consider a particle of m

ass m
 m

oving in a force field. 
If the position 

vector of the particle w
ith respect to a fixed origin is denoted by r , then by N

ew
ton

's 

~
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V

ariation
al P

rob
lem

s in P
aram

etric F
orm

 
I 

. 
. 

. 
. 

d 
t. 

es necessary to 
n m

any v::m
at,onal problem

s, 11 1s m
ore convenient an 

som
e tm

 
m

:.i"-c use 
o

f :.i param
etric representatio

n of a line as follo
w

s: 

.t 
=

 
~

?!l), 
,. =

 
lfl(t) 

fo
r t0 S

t S
 r1 

(1
.47

) 
(\)n:-.iJt>r th

e functional J
r1 

. 

J[ .\'.(t), y(t)] =
 

F
(t, X

, Y
, X, )

1 ) dt, 
ro 

( 1.48) 

w
herc the integration is alo

ng the line (1.4
7) and a dot denotes derivativ

e w
ith 

respect to r. In order that the values of the fu
nctional ( 1.48) depend only on th

e 
line, and no

t on the param
e.trization (w

hich can be accom
plished in a num

b
er o

f 
w

a
y

s), 
it 

is 
bo

th necessary and sufficient that the integrand in (1.4
8) do

es not 
cont.:i.in t exp

licitly and th
at it is hom

ogeneou
s of the first degree in .x and )'. T

hu
s 

F
(x, y, h

, ky) =
 kF

(x, y, x, y), 
k >

 0. 
( 1.4

9
) 

T
ake, for ex

am
ple, J

IJ 

l[x(t), y(t)] =
 

</>_ (x(t), y(t), x(t), y(t)) dt, 
to 

. 

w
here ¢ satisfies the hom

ogeneity condition (1.49). L
et us now

 consider a new
 

param
etric representation 

r =
 s(t)(s(t) 

-:f. 0), 
X

 =
 X

 (r), 
y =

 y(r). 
T

hen J
1

1 
fr' 

. 
· 

d 
¢ (x(t), y(t), i(t), y(t)) dt 

=
 

</>(x( r), y( r), x r( r)( (t), yr( r) ( ( r)) -J. . 
1 0 

r
0 

r 

B
ut since ¢ is a hom

ogeneous function of first degree in .x and y, 
. 

. 
. 

¢
(x, Y, X

 r (,Y
r()=

 (</>(x, Y, Xr, Yr), 

T
his gives fro

m
 the above equation 

J
IJ 

Jrl 
¢(x, y, x,, )

11 ) dt =
 

</>(x, y, Xr, Yr) dr. 
ro 

ro 

Thus the integrand rem
ains unchanged w

ith a change in the param
etric representation

. 

J
t2 

For exam
ple, the. area bounded by a dosed curve given by 

(zj., -
y.x) dt 

is a 
t1 

functional w
hich can be P,Ut in the form

 

f 12 

!Ix(t), y(t)] =
 

«P(x,y, .x,y) dt, 
ti 
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w
here <1> is a hom

ogeneous function of degree one in .x and y. Thus to find extrem
als 

for I, one has to solve Euler's equations 

d 
<PX 

-
dt 

<P,t =
 0, 

d 
<Py -

dt <Pj, =
 O

 
( 1.50) 

H
ow

ever, these equations are not independent, because these m
ust be satisfied by 

a certain solution x =
 x(t), y =

 y(t), and any
_other pairs of functions w

ith a different 

param
etric representation of the sam

e curv~,_w
hich, in the case of E

uler's equatioqs 

·· · peing independent, · w
ould -conflict '.W

ith the· theorem
 of exjstence _and uniqueness . 

of a solution of a system
 of. differential equations. Thus W

e conclude that in 

(1
.50}, ariy D

ne equation is a .. consequ
ence of the other and to find the extrem

~ls, 

' . , ope has _t,o solve any one of t~e equations ( 1.50) ·along w
ith the equation x 2 +

 j,2 =
 l, 

w
hich show

s that the arc length of the curve is taken as the param
eter. 

The W
eirstrassian form

 of E
uler equations (1.50

) is 

l _ 
<Pxj, -

<Pyx 
r 

-
<Pi(.x 2 +

 y2) 3/2 
(1.5

1) 

w
here r is the radius of curvature of the extrem

al and <P
1 is the com

m
on value 

of the ratios 

¢ 
/

·2
 

;·2
 

;
· · 

l =
m

·-
y 

=
m

··X
 

=
-m

 .. .xy 
'I' x.x 

'I' yy 
'I' xy 

For exam
ple, in finding the extrem

als of 

J
t1 

I[x(t), y(t)] =
 

[(.x
2 +

 y2)
112 +

 a
2(xy -

yx)] dt 
to 

w
e first notice that the integrand <P(x, y, x, y) is hom

ogeneous of degree one. 

U
sing W

eirstrass fonn of Euler equations, w
e find that 

F
xj, =

 a
2, 

Fyx =
 -

a2, 
Fi =

 (x2 +
 _y2)312 

(1.52) 

give 1/r =
 2a

2, 
w

hich show
s that the extrem

als are circles. 

,. 
1.7 

Som
e A

pplications to Problem
s of M

echanics 

H
am

ilton's P
rinciple 

O
ne of the m

ost fundam
ental and im

portant principles of m
echanics and m

athem
atical 

physics is the principle of least action due to H
am

ilton (W
illiam

 R
ow

an H
am

ilton 

(180
5

-186?), an Irish m
athem

atician, also know
n for his invention of quaternions). 

U
sing fhis principle one can deduce the basic equations governing m

any physical 

phenom
ena. L

et us form
ulate the principle for a dynam

ical system
 of particles and 

begin by considering the case of a single particle. 

(W
e
 consider a p~rticle of m

ass m
 m

o~i~g _in a force fi eld . If the position 

vector of the particle w
ith respect to a fixed ongm

 1s denoted by r, then by N
ew

ton's Ii 
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u
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111t1l1u11, f11e p.11'1 p
f IIH

· p.111ic
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is J'.<>'v1·rn
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d
·'r 

/J/ 
I 

f' 
tit. 

w
h

l'll' f is !h
r (p

m
• ;1cti111i 

u
11 

tlw
 11,11 IH

·lr 
, 

' 
I. 
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N

ow
 rn

11s1
d

n
 n11y 111111'1 

p:1tli r 
I 

i'ir 
,111 

Ill!' p
to

v1so 
tll;il 

llil' 
va11l·d path coi11rid

r :11 
lw

P dis1i1l('I 
i11sl:111ts / 

t
1 a11d 

t 
that 

or I,, 
-.:1· 8 r I' 2 =

 0 

( I ."i q 

1l1c 
true p:1rh 

;111d 
t J

· T
h

i<; dem
ands 

( L
5

4
) 

A
t any intL

:rm
ediatc tim

t: t, WL: exam
ine the rrnc path ran

d
 varied palh r +

 or. 
T

aking the dot prod~1C1 of variation or into ( l .53) and integrating tl1e result 
w

i th 
rl'spect to tim

e over the interval ·(I,, t2
), w

e get 

J
IJ (. 

1 
) 

111 d ·~-
. 8 r -

f · 8 r 
rlt =

 0 
tit'· 

' 
, 

,, 
' 

( 1.55) 

Integrating the first term
 in (I.Y

i) by parts, and by using ( J.54
) w

e find that 
\ 
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l2 
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12 
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d

2r 
dr 
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dr 
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\\\. m
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r
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di 
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J
12 

( 
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f 12 
=

 -
8 

m
 
~
 

dt =
 -8

 
T

dt 
. 

2 
dt 

,, 
,, 

w
here T

 is the kinetic energy f m
(cfr/ dt) 2 of the particle. S

ubstitution of the 
above relation in ( 1.55) then gives 

J
t2 (o

T
 +

 f · o
r) dt =

 0 
IJ 

( 1.56) 

T
his is H

am
ilton's principle in its m

ost general form
, for a single particle. N

o
w

 
consider the case w

hen the force field f having com
ponents (X, Y, Z) is con

servati vc 
w

hich im
plies that 

f · d
r ( =

 X
 dx +

 Y
 dy +

 Z
 dz) 

is the differential of a single-valued function <P<,x, y, z). T
his function is called the 

force potential and its negative, 1sfy V, is the potential energy of the particle. T
hus 

f · 8r =
 o<P =

 -
8V 

and its substitution in (1.56) gives 

J
r2 

8 
(T

-
V

) dt =
 0 

IJ 
( 1.57
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J', th•: 'IJ(,rk rkri': 

by the frircc fin
 a ~:m
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tnt h

r. T
h

e.; frJn.:g<>rng ·,tudy U
:H

1 r:,(.:. f::.<1.'.ily '.:.J.t.':TJ1'Y
1 

to a system
 fif N

 particle~ hy ·1um
rm

1ti,Jn and tri a i::r,ntinur,u·, \j'.,tJ.:.rri b
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tJ.:.groJ
V

>f: 

T
hu

s for N
 partic

les, th
t kinetic energy i\ 

_ ~ 
J(drr.)

2 

T
 -

.L
, -m

k
 -

r.=t 2 
·· 

dt 

// 

::>'ld the total 
w

ork done by the forces i) I 
f J: 

• or1:. 
k.=I 

In 
fact, 

the 
principle applie) eq

ually 
w

ell 
to a general 

dy
nam

iu1l './·,ttm
 

consisting of a ~ystern 0f particle) and rigid bodies. 
L

et us n
0w

 apply the abo
ve prin

ciple to derive the tquatirm
 o

f ·1ibro.tir>n 
ryf 

a rectilinear bar. A
 di5placcm

ent from
 the equilibrium

 pnsitir,n urx
, tJ w

ill )'){: a 
function of x (m

ea')urcd along the bar in the undi~turbe<l po<,itir1nJ and tirrie 
t Trs'.1

. 
the kinetic energy of the bar of length l is 

f,
I 

( 
-

2 
T

=
l_

 
p ~u) dx 

2 
0 

. dt 

W
e assum

e that the bar is slightly exten
sible. T

he potential energy of an 
t

l,n
ti( 

bar w
ith a constant curvature is proportional to the square of the curv

ature 
T

hu
, 

the differential dV
 of the potential energy of the bar is 

--i 
~ '·I 

,J -<". 
r· . 

dV
 =

 ½k[ ~~/[I +
 (: rrr dx 

\ 
f

· 
~~ 
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law
 of m

otion, the path of the particle is g~·~e~~d by the equation 
d

2r 
m

 -dti 
=

 f., 
(1.53) 

w
here f is the force acting on the particle, 

. -
, 

N
 

\··' 
th and 

ow
 consider any other path r +

 or on the ptoviso that the true pa 
the varied path coincide at tw

o distinct instants t =
 t I and 

t =
 t2. T

his dem
and

s 
that 

· 8-r l,i 
::z· or lt2 =-Q-

-(1.54) 

A
t any intennediate tim

e t, w
e exam

ine the true path r a11·_d vari~d path r +
 ~r. 

T
aking the .d.ot pr9dl;lct o

f vaiiatfon or foto (1 .-S.3) ·an-cr:integrating
_the result w

ith
­

respect t9 fhne · 6vfr tbe .foiei.-v~f'(i,; t2 ), w
e-get 

I t 2 (m
 .4 2~ 

• or -
f • 8 r) dt =

 0 
ti 

rJt 
' 

' 
(1

.55) 
,. 

Integrating the first term
 in (1.55) by parts, and by using ( 1.54) w

e find that 
_ 

, 
. .\"' 'i. 

. . 
h 

1 
.. 

>,·~ 
.rt'l: ~1·,} 1d

2
''f· 

.;':\\ 
[~J-, 

1 2 J'2:·" . (d
r) j 

_ ;\.\ -\\ \, 
m

 
-f , 8 r dt =

 ,.n 
d~ · 8 r 

-
_ _ 

d; · _8 d
t 

dt 
, 

.~
-\•. 

J 
ti 

dt 
ti 

. 
ti 

.. 
. ·~

 
-

\' 

J
12 

(d )2 
f '2 

=
 -

8 
~ 
~
 

dt =
 -8

 
T.dt . 

, 
2 

dt 
-

IJ 
IJ 

w
here T

 is 
the kinetic energy ½

 m(drl dt)
2 of the particle. Substitution of the 

above relation in (1.55) then gives 

f
t2 (o

T
 +

 f · o
r) dt =

 0 
t1 

( 1.56) 

T
his is H

am
ilton

's principle in its m
ost general fonn, for a single particle. N

ow
 

consider the case w
hen the force field f having com

ponents (X
, Y, Z

) is conserv
ative 

w
hich im

plies that 

f · d
r ( = X

 dx +
 Y

 dy +
 Z

 dz) 

is the differ~ntial o~ a single.-val1 u~p fu~ction <!Xx,~· z). T
his function is called the 

force potential and 1ts negative, 'siy V, 1s the potential energy of the particle, T
hus 

f·
&

=
8

<
P

=
-8

V
 

and its substitution in (1.56) gives 

f
t2 

8 
(T

-
V) dt =

 0 
IJ 

(1.57) 

~
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w
hich is H

am
ilton's principle. T

his states that the m
otion is such that the integral 

of the difference betw
een the kinetic and potential energjes is stationary for the 

actual path. T
he difference T-V

 is know
n as the L

agrangian function. It can be 

show
n further that this integral is a m

inim
um

 for the true path, as com
pared w

ith 

any neighbouring path having
_ the sam

e term
inal configurations, at least over a 

sufficiently short tim
e intervaL_ 

From
 H

am
ilton's principle~ one can derive another im

portant principle, know
n 

;~ .. ,~sJJ~rtz'_s principl_e .. Thi~ -~tates thate p
a

$
c
lkJ

0r-a· system
) m

oving on a surface 

w
ithoitt externalforces acting on it,. follow

s a geodesic linS
J 

. . 
IA_Iiti~ q :is caJJ_eq_ the 2 :9

~
~i~_Q

n a surfa~~.}.if_.il t e~~h pom
t of q, t?e p~in~ipal 

.. -ror~
lcom

cides·W
ith the nonnal to the surface.\\A

s-an.jtxam
ple of H

ertz s pnnc1ple, 

w~ m
ay riot~ thaf~

j~
int on a· ·spherical surrifce m

oV
e·s ·aiong ·a -great circle if .it 

.- is not acted by externai forces. Sim
iiarly,· a point on a cylindrical surface m

oves 

~?n_[~--~i~-~!--~~~~i."l~:~ i~mi circum
stan

cesJ 

~
y

 topological m
eth

ods in variati9nal: problem
s (L

yusternik [2]), 
one can 

shO
\~_. fhat on .. ariy smootll: closed surface,. there are at least three closed geodesic 

F
n

e
~

l.~
t~

~
~

)n ellips9id has three-·sym
m

etry gJan~s, ~md t~.e ellipses, along 

w
hi~h t?ese th_re.e planes cut the ellipsoid, are c!os~d g_eo_~_esicsJ 

If the force fiefo is non-conserv
ative (e:g., .a·diss-ipative- system

), tH
e potential 

energy fu
nction does not exist, but (1.56

) s-till:holds, and f · or is the w
ork done 

by the force fin
 a sm

all displacem
ent 8r. T

he foregoing study can be easily extended 

to a system
 of N

 particles by sum
m

ation and to a continuous system
 by integration

. 

T
hus for N

 particles, the kinetic energy is 

T
 =

 I, lm
( drk)2 

k=I 2 
\ 

dt 

N
 

~11d the total w
ork done by the forces is 

L
 f k • 8

rk
. 

k=I 

In fact, 
the principle applies 

equally w
ell to 

a general dynam
ical system

 

consisting of a system
 of particles and rigid bodies. 

L
et us now

 apply the above principle to derive the equation of vibration o
f 

a rectilinear bar. A
 displacem

ent from
 the equilibrium

 position u
(x, t) w

ill be a 

functio
n of x (m

easured along the bar in the undisturbed position) and tim
e t. T

hu
s 

the kinetic energy of the bar of length l is 

} JI ( 
2 

T
=

-
p Ju J 

2
o 

at 
d.x 

W
e assum

e that the bar is slightly extensible. T
he potential energy of an elastic 

bar w
ith a constant curvature is proportional to the square of the curvature. T

Hus 

the differnntial . dV
 of the potential energy of the bar is 

_ 
\ 1 

dV ~½k[ ~~/[1 +(:rrr dx ----) 
\ ' ' 

rJ. 
_

l.,. 
4'\ 

'f 
. 

r--n 

L
--~---f -~

 

• 
I 

., f 
j. 

~ I 

I ~
- ~
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C
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pplica
tions 

k b . 
. 

h 
e axis-curvature 

· 
em

g a constant. Thus the potential energy of the entrre bar, w
 os 

is variable, is 

I [ 
/

[ 
Jl3/2r 

U
 =

 ½k 1 ~~ 
1 +

 ( ~ r j dx 
-':: 

A
cco

rding to our assum
ption of slight extensibility, the deviations of the bar from

 
,;: 

_ 
_the equi~briunJ position are sm

all, and th~_teJill (q_tj,/Jx,)2 m
ay be. ignored. N

ow
 by 

-i~ _
_ -H

am
tlton

' s prin~iple: the integral 
~-

. ( ;_ 1. 
~
 

_ 
_ __

_ 
. 

_ 
_ 

. 
( 

,r 
,I 

j 
I 

d 
) 

.J 
\ 

\ 
'\J .I '-' '• 

1,_ 
~

\ 
. . It 2 -r I [ 1 

C
 

( Ju ) 2 
1 

( J 2 u) 2] 
. ~ . 

. ~ ' 
I.'! 

. 
I 1. ~
 

I/ l 
-~

 ; 
,..,. . 

J, 
2P

 Jr 
-2

k 
r1x2 

. dx1r,_: 
·'; e

(·p~ ,1
J_-,.. v~ ~~-

j 
o)i

; 
-

. ,~,,,,· -
-

. -
l'.L 

O
 

, . 
I 

·-•
• ~.A

 .I 
I 

• 
J 

..J 
w

ill be an extrem
um

 for fixed term
in

al tim
es t1 and 

t2 . The E
uler-O

stogradsky 
.. ~ 

equation then gives r r1G
 t 

IJ 
1.i' /

j _ f._ (~{ \ 1
r l:./ °Y'~ 1 

\
~

' 
• 

) 
i)l 

,_'_-2._.( __ . 
) 

1,.-,> "P 
I 

~) \"c})\1, 
't \ 

d ( ~t 
-Lii '\ l.('(,1.-'> _! 

1-~ 
( 

cJz ) 
2 ( 

2 
) 

· \ 
~
 

· . .:(J,. r.,..., ~~---··11)'~· 
. -,:" f 

•J 
?tv

0 
l. p

-
1 

+
 ~
 k a ~ 

=
 o 

-~
 

-
"n""-\~"''t 

"bt\ 
· ,~ _ ~

 , §:.1.~--~· n 
n 

; ✓ 
at 

at 
Jx 

Jx 
..--~c,,_ )-t 

~-.L \'21\,f 
I 

"
'' 

'---
, 

,+-~r.;t.A
t-t 

~
N

M
 

· 
/ 

__ ) 
w

hich is the governing equation for displacem
ent u(x, t). 

0 
t· 

' 
"' ;:, 

In a sim
ilar m

anner it can be show
n that the differential equation f Jr the 

---1 .__:-
·-aispiacem

ent u(x, t) of a .. highly flexible and alm
ost inextensible hom

ogeneous 
string from

 its equilibrium
 position is 

~
 

J
2u 

T
-J

2u 
at2 =

 p . Jx2 
I 

w
here T

 and p denote the tension and the line density of the m
aterial of the string. 

T
here is an im

portant generalization of the above equation, w
hen the string 

is acted on by a uniform
ly distributed linear restorin

g force, directed tow
ards the 

~uilibrium
 position. This leads to adding a term

 of the form
 
-k

u
 (k being a 

positive constallf(ff~ ~~e right-hand side of the above equation
. The new

 equation 
is know

n as thft K
lein-G

ordon equation w
hich

, in its general form
, is given by 

~
 

_!_ J2
u =

 v
zu -

ku, 
c2

 =
 T

ip 
? 

::i. 2 
c-

U
I 

~ ---
______, 

.1
1 I 
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1.8 
V

ariational Problem
s L

eading to an Integral E
quation or 

a D
ifferential-D

ifference E
quation 

Thus far w
e have been concerned w

ith variation
al problem

s involving functionals 
form

ed by integrating a certain differential expression in the argum
ent fun

ction. 
B

ut m
ore general classes of functionals are often encountered in variational prob

lem
s. 

Let us consider the functional 

I[¢
] =

 ff 
K

(s, 1)¢
(,)¢

(1) ds d1 +
 J [¢(,)I' ds -

2 J ¢1< l/
(s) ds, 

_f f -• I' ,( 

l F
 
~
 

-~ 
~
 

~
 

t~
I 

(.~
--

~~ 
~

-

r $: 
lo

 
&

~ 
~,j 
~
 
~
 
~
 

'-''::::J 
~
 

\~
 

~~
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w
liirh w

r 
wa111 t(l cxlrl'm

izr. I h-1\: K
(s, !) is a given continuous function 

w
ith 

K
(s. r) .. 

K
(I , s), (ls) is a given conti1111rn1s function of sand ,p (s) is the unknow

n 

cu111 i11unus 
f11nrtio11. 

A
ll 

inkgrations are confined 
to 

the 
interval 

a ~ s ~ h, 

u · , I
...:: h. W

l' rcpl:H
.: r ¢ hy cp +

 rt; and considn l(<P +
 1{) =

 
1/l(f). Tilt: variation 

i'il g. iw
n hy [d

1/ 1/drL
-

0 is obtained .irtcr sornc transform
ation as 

f
l, lf'' 

2 
t;(f) 

K
(s, t)¢(s) ds +

 ¢
(!) -

f(I) .' cit. 
11 

CJ 

I knee the requirem
ent o

f=
 0 for an cxtrcm

um
 leads to Fredholm

 integral equation 

f
l, K(s, t)¢

(s) ds +
 ¢(t) =

 /(/). 
II 

as E
uler equatinn for the problem

. 

L
et us next consider another functional 

I[¢
 I=

 J_"' }p
(x) (¢ '(x)) 2 +

 2¢(x +
 l) ¢(x -

l) -
¢ 2(x) -

2
¢

(x) f(x)] dx 

w
hich is to be extrem

ized
. H

erc the argum
ent function is continu

ous and has a 

piecew
ise continuous derivative in the entire interval -

0
0

 <
 x <

 
0

0
• N

ow
/ 

O
J=

 [1c 1(¢ +£SiL
0 

/ 

./ 

=
 2 f

0

0
0

 s(x) [-(p
f)

' +
 ¢(x +

 2) +
 ¢

(x -
2) -

¢
(x) -

f
(x)] dx 

N
ow

 the vanishing of of for arbitrary s gives 
(µ¢' )' -

¢(x +
 2) -

~(x -
2) +

 ¢(x) +
 f (x) =

 0 

w
hich is a differential-difference equation for the argum

ent fun
ction ¢ex). 

1.9 
Th

eorem
 of du Bois-R

eym
ond 

It m
ay be recalled that in deriving Euler's equation fo r the functional (1

.8), it w
as 

assum
ed that the adm

issible fu nctions adm
it of continuous first order derivative. 

H
ow

ever, a variational problem
 w

ith integrand F
(x, y, y' ) is also m

eaningful w
hen 

y' is required to be only piecew
ise continuous. 

C
onsider firs t an actual m

inim
um

 problem
, such that y(x) is that function w

ith 

continuous first and second derivatives, w
hich renders

/ in (1. 8) a m
inim

um
. T

hen 

it can be. show
n that y(x) yields a m

inim
um

 if w
e expand the class of functions 

to include functions y* w
hich need not have second derivatives. In fact, according 

lo W
eirstrass approxim

ation theorem
, w

e can approxim
ate the function y* b

y a 

polynom
ial p(x) and y* by the derived polynom

ial p'(x) as closely as w
e like, 

w
here p(x) satisfies 

the boundary conditions p
(a) 

=
 y

1 and 
p(b

) =
 y

2 as 
in 

Section 
1.2. Then clearly /fp(x)] differs arbitrarily little from

 
/fy*) . B

ut since 

~
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C

alculus o
f V

ariations w
ith A

pplications 
( ) · 

d 
· 

· 
. 

. 
d derivatives, 

P
 x 

is an a m
iss1ble com

panson function w
ith contm

uous secon 
I[p

(x)] 2:: l[y(x)] and therefore J[y*(x)] ~ J[y(x)]. T
his proves the result. 

W
e next prove our assertion in Se.ction 1.2 that if in this variational pro~l~m

 
y~x) is the extrem

izing function (satisfying the boundary conditions) adnuttrng 
firS

t order continuous 
derivative, 

then 
y(x) 

adm
its 

of a continuou
s 

secorr d 
derivative also provided that Fy'y' -:t O

. T
his is the theorem

 of du B
ois R

eym
ou<l 

(see C
ourant and H

ilbert (3a]). 
. 

W
e first prove the follow

ing lem
m

a: If q>(x) is a piecew
ise continuous function 

m
 (a, b] and if 

· 
· 

r 
. 

-
·

· 
· -

-
i -

· 

J
b 

. 
a ¢(x}71(x) dx =

 0 

-holds for arb\trp,cy. continuous function 77(x) satisfying the condition 

f l)(x) dx =
 0, 

then q>(x) is a constant. 

(1.59) 

T
o prove this lem

m
a, w

e first note that the relation (1.58) is clearly satisfied 
for constant¢

. W
e now

 fix a constant C
 such that r (IP -

C
) dx =

 0 for the given 
IP-

T
hen from

 (1.58) and (1.59), w
e have f (IP -

C
)l) dx =

 0. S
etting 1J =

 r/> -
C

 
in th

is relation gives f (IP -
C

) 2 dx =
 0 and this proves the lem

m
a. T

his result 
can be generalized in the follow

ing m
anner: If ¢(x) is a piecew

ise co
n

tinuous 
function satisfying r IP1J dx =

 0 for all continuous functions 1J(x) such that 

r 1J dx =
 o. r Xl) dx =

 o ..... r X, 1) dx =
 0 

then ¢ is a polynom
ial of nth degree. 

T
o prove du B

ois-R
eym

ond's theorem
 w

e note from
 (1.13) that the relation 

r [F,( +
 F,,(']d

x =
 0 

holds for any continuously differentiable function s(x), satisfying s(x
0 ) =

 ((x
1 ) =

 O
. 

P
utting f

y =
 A

', Fy' =
 B

, w
e obtain, after integration by parts, the relation 

J
X

\ 
JX\ 

(,f s + B
s
') dx =

 
s'(B

 -
A

) dx =
 0 

XQ 
XQ 

W
e ,elect an arbitrary function t;' =

 TJ w
hich is continuous and satisfies 

J
X

\ T} dx =
 t;(x

1) -
t;(xo) =

 0 
XQ 

t \ i J :' ~, " .
I 

i -~ 

11 ~ i 1 
-

~ I 

q 
-i ~ I ,, 
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A
pplying the previous lem

m
a, w

e obtain 

•
xi 

B
 -

A
 =

 Fy, 
-J 

Fy dx =
 C

 

xo 
(l .uO

) 
. 

w
here c does not depend on x. E

quation ( 1.60) takes the place of E
uler's equation

. 
N

o
w

 since f x, FY _cJx_ _i~ ~iffere~tiab!e-w
ith respect to x, it follow

s from
 (l ._60) that 

. 
. 

x,9 
-
-

-
-

-
-

-
-

-
FY, also is d~ff erentiable: H

ence_Euler!-s-equati9n -._ 
d

. 
. -. dx

. Fy, ~::F;_ ~ (f: . 

. holds: Now .if F
 i-s t;i~-e:-~-oritinuo~sly differentiable w

ith respect to its argum
ents, 

and further Fy'y' =t O
 is satisfied, it follow

s that the piecew
ise continuou

s function 
y' is also continuous and has a continuous derivativ

e. B
ecause, if Fy'y' =t 0, y' m

ay 
be expressed as a continuously differentiable function 

<j>(x, y, 
Fy,). 

Further by 
virtue of ( 1.60), F

y, is a continuous function of x and y' is also con
tinuou

s. H
eri.:e 

the argum
ents y and Fy' of <j> are continuou

sly differen
tiable and hence y' (=

 </>) is 
also continuou

sly differentiable. T
his establishe9 D

u B
ois-R

eym
ond's theorem

 
w

hich can be easily extended to an integrand of the form
 F

(x, y, y', ... , yCn): by 
--using the generalization of the above lem

m
a. 

1.10 
S

toch
astic C

alculus of V
ariations 

W
e hav

e already seen in Section 1.7 that in classical m
ech

anics the dynam
ical 

law
s of m

o
tion are represented by a variational principle given by H

am
ilton

's 
principle of least action

. In particular, for a dynam
ical system

 w
ith f degrees of 

freed
om

, the possible m
otion is given by a flow

 in R
f w

hich m
akes the functional 

J =
 f L

(x(I), X
(t)) dt 

stationary. H
ere L E

 
C

1 (R
2f ~
 R

) is the Lagrc1ngian of the system
, x 

E
 C

2 ([a, b] 
~
 R

f) is the flo
w

 and .x is the velocity d
x/d

t. In this case, N
ew

ton's dynam
ical 

law
 follow

s from
 the Euler-L

agrange equation 

!l_(dL)-
JL 

=
 O

 
d

t ax 
Jx 

for the fun
ctional J. 

In quantu
m

 m
ech

anics, the dynam
ical law

 is given by S
chrbdinger equation 

iJ1· Jlf. =
 (-

le_ V· V
 + v)P, 

·at 
2m

 

w
here h is the P

lan
ck con

stant divided by 2rc, P
 E

 L
2 (R

f """""? C
). H

ere L
2 is the 

space of sq
uare integrable functions in the L

ebesgue sense. M
otion of this system

 
is determ

in
ed by a one-param

eter unitary flo
w

 in a H
ilbert space l,i(R

f """""? 
C

) 
generated by Schrodinger eq

uation
. 

li 
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C

a
lculus o

f V
ariations w

ith A
pp

lications 

I 
h 

. 
h 

· c 
is radically 

t 
as been opm

ed that the dynam
ical law

 in quantum
 m

ec 
am

 ::. 
. 

diff 
• 

. 
. 

· 
least action 

erent from
 that m

 classical m
echanics. ln particular there 1s no 

. 
. 

. 
. 

al h 
h Schw

m
oer 

pnnc1ple analogous to that of H
am

ilton in quantum
 m

echam
cs, 

t oug 
0 

H
] deriyed a w

eak \, rsion of the principle. 
. 

. 
R

ecently, Y
asue (51 developed a•theory of stochastic calculus of vanat~ons, 

w
hich m

ight be regarded as a generalization of the ordinary calculus of vanauons, 
to stochastic processes. 

-
-

W
e 

now
 

give, follo
w

ing Y
asue, a -brief ex.position of this-principle. _Let 

· =
 (Q

, A
, P

r) be 
a -probability

-spaee,=w
here .Q

 is a certain non-em
pty se_~~ A

 15 a 
. 

a
-algebra of subsets of 

.Q
 and Pr is 

a probability m
easure defined on A. 

A
 

m
apping x from

 an open tim
e interval J into a H

ilbert space H
 =

 L1 ((.Q
, P

r} ~
 

R
f) is called a stochastic process of second order in R

j if t ~
 x(O

 is ~onJj.p.uous 
,_from

 lin
to~.fl. N.o.w_.1et p =

 lP
rfreJ 

and F
,; lfrLEI be an increasing fam

ily and 
a decreasing fam

ily of a-algebras, respectively, such that x(r) is Pr-m
easurable and 

fr-m
easurable. 
If 

D
x(t) =

 
lim

 'E
lx

(t +
 h) -

x(t) \ J 
h ~
 0 +

 
h 

P
r 

exists as a lim
it in H

 for each t in I and t ~
 D

 x(t) is continuous fro
m

 I into H
, 

· then the stochastic process is said-to be rriean forw
ard differentiable. F

urther, if 

.. D
,x(t) =

 
lim

 
E

[x(r) -:lt -
h) \ I 

. 
h ~ 0 +

 l 
1J 

Ii 
} 

! t
l 

e ~
 

• I 

i i I,,_ 

11 
nij· 
~
 

11 
~
 

~
,. 

r
· 
~
 

.;, .~
 

·:i ~, 
exists, w

e say that x(t) is m
ean backw

ard differentiable. In the above definitions, 
E

(· I B
] 

denotes the conditional expectation w
ith respect to a a-algebra B

 c
A

. 
F

urther, D
x and D

*x are said to be m
ean forw

ard and backw
ard deriv

ativ
es. 

-~.el i4 
W

e now
 denote, by C1(J ~

 H
), the totality of m

ean forw
ard and backw

ard 
differentiable stochastic processes of the second order adapted to P

 and F
. T

he 
com

pletion of C
1 in the norm

 

lllxlll =
 sup (llx(t)IIH +

 IID
x(t)IIH

 +
 IID

*x(t)IIH
) 

tE
l 

is also de11oted by C1(J ~
 H

), w
here 11 · \\H

is the n
orm

 of H
. 

L
et L E

 C1(R
3f ~

 R) and w
e consider a functional defined on C

1 U
 ➔
 H

'), 

J ,b
 =

 Eu: ~x(t), D
x(t), D, x(t)) dt1 

w
here E

 denotes the expectation and a, b E
 I w

ith a <
 b. A

 function
al J defined 

on C
1(I ➔

 H
) _is said to be diff~rentiable at X

 E
 C

1(I ➔
 H

) if 
J(x +

 z) -
J(x) =

 dJ(x, z) +
 R

(x, z) 
H

ere dJ is a linear functional of z E
 C

\I ➔
 H

) and R(x, z.) =
 0 (II z I\ 1. The hnear 

functional dl on C1(I ➔
 H

) is called the variation of the funct1ona\ J at x E
 

C1(I-, H
). 

I 

I 
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p

H
1
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, 1, 
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I
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, 
• 

,.1.J '• 
flt' 

/ 
:1d.q•iL'd 

h•11111, ,e,1 m
r r111t"'"''t ..... __

___ 
ti. ,Jku

lL
h

, 1 ,,111.,11u11, 
l
h

l' 
!un.111u1~tl J

, ~·1·.e11 .1h11'•<" ,~ 
!ti!• 

en11.1t,tc 
,,1 Jll', 

/ 
JJ.q'll·d 

/ 
• II' 

.lth
l 

11, 
\,ll!<

ll,u
li 

,, r1;c11 
I)

, 

.u _\ 
J 

( 1/ 
.. , 

I 
,f 

I 
/ J, 

I 

/} 
11:111,11 

l\U
 I 

/1/
h

li I 
,1/J. \ () 

.J 

' 
I , , 

1 l/. 
i 

,1/ 
·u

, 
,)/

)\II) 
1)/J

, t(/\ 

\n '-a,l.tplL'd 
jlltl,

L
'\\ 

\ E
 (' 11/ 

'
"

' ,, ._:jlk
J ,1 

,1.11
11111.ll

, po
llll ill ,Ill t'\llt'l!l.d 

P
l rnc tu

1h.tit111.tl J .. 
1f 11 Jc,tro1 .., the J1ttacnt1jl 

.1t 
1

. 
1 c

. J
I 

~ 
t 1 

\\'.: llU
''· 

,1.11c the follow
ing fun

J.1m
ent.d tht'L)ft'lll 

\ nc,l·,,.n:, 
.111d ,utf1,1cnt 

\.t
nJ111rn1. fo

r rin L
<1Japtcd procc-;, tu he .1ll c\trcrn,tl 

1,1 !ht' 
!U

Jk'lJ11n
.d 

./.·• ;'l\ l'll 

t,:ttirc \\ 1th !1xcd cnJ po
ints t(a

) =
 

-c 
,,nJ 

\(b
l =

 
i.. 

,, 
1h.H

 1t ~.m
,t1

c
-.. 

JL
 

(M
tl 

( 
r7L

 
) ri 

c)f 
) 

/) 
-.-

-
-

-
-
(
)
 

' 
rl/Jt(I) 

. ()/), \(f) 
-

.dm
o

\l .,u
rcly (a_.,_), ,~here \,1 ,rnd 

t., tw
long 

{l) H
. 

T
o prov

e thi~ tlw
orcm

 w
e 

lllltl' that sir1ec :lal =
 :li>) =

 0, 

[ -I 1' [ 
rlf 

d I,,,, 
-

F
 

., 
\h

(r) 
l 

cJ/, j 
\ 

/I/ 
J j 

l 
n. 

. 
-

-
l 
-
-

:lf) cir 
rJD

\lt) 
,)/). t{

t) 

It -..ut!itt·, 11>
 ... how

 that tu
r ,1 -,11,l'h,1:,,ttL

 pnlL't•,s t,f SL'L'1l!HI 
11lk

r 
,·. 

nJ· ,,,) ,(r) .It l . " 

I\
_(, I) 

j01 
illl)

: 
1 

(
' 1(/ 

) 1/) itl \' -
() 

(;1 :--.\. :\
,..,u111L' 

\'lll) '• 0 l;t.s
.) ltir II 

L
 

ld
. /,)

_ 
l'l1t·11 

hy c1)11t111uity }'(/) '• ('
..., O

 (a
.s.) 1n a nl'islib

n
m

h
ond o

f 11: 1
1

, 11 
-

cl
.....: 

r •, 
11 

1 1/ 
.-

h, rl >
 0. flut since : 

E: ( ' 1(/ 
-

) JI) is arb
itrary. 

\\'t' m
ay l'll()P

sr 
:1 

11\t'a
n

 
,

q
u

:tlL' 

dilkrcnt1ahk prnet:~
s: :,,11ch that

:-(()
=

 0 (a.s.) fn
r u

, 
r ".:-:, 

11 
<I. 11 

t 
ti

·. 1 ,, Ii. 

:(() 
>

 O
 (a

.'>.) for 
II 

cl-... t <
 11 +

 cl :111d :lt) =
 l ta.s.) fur 

u 
1~ 

..... t <
 11 

t--
~

-T
hrn 

-
-

y(I) • :(I) cit~ C
d>

 0 (a
.s.) and w

e g
et a contrad

iction
. Th

is prn
w

s the th
l'<)J\'n

i. 

I /, a 
To .givt an exam

ple, 
W

l' consider a M
arkov process

.\' 
E

 c'u -
>

 J /) 
:111

d 
/, is 

given by L(x, D
x, D

.x) =
 L

1 (V
x, n .. r) --

V
(x) 

=
 ½

 (½
 m ID

xl' +
 ½

 111 ID
.xi')

-
V

(.1) 

IJ 
• 
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C

alculus o
f V.ari.arions h

'iJh A.pp!icarion.s 
. 

_ 
k. 

, -. ·m
d pnll'lllial 

w
h

ere m
 1s the particle m

ass and L
1 .:.lild r com

.·spond tu
 th~ 

m
d

tL
 • 

en
ergy. H

ere the E
uler equation (1.61) b

eco
m

es 

,~r {D
D

.x
 +

D
.D

x] =
 -

V
\'(x

) 

alm
ost surely, w

hich m
ight b

e regarded as the genera1i1,atil)ll 
l)f N

ew
ton

·::; dyn:im
il'al 

law
 to a stochastic process. 

J_._11-
Supplem

entary R
em

arks 

.. Variational P
rinciple for the E

quation _v"(x) =
 .f{x, y, y') 

)t_~ai;roJ.sM
w

.n thafany equati0n of the above form
 is a E

uler equation fnr som
e 

functional 
. . 

I[y(x)] =
 j F

(x, y, y
') d

t. 

I 
T

his can be established by seeking the fun
ctional for w

hirh the E
ukr's l~quatinn 

F
y 

-
F

y't 
-

F
y'y y' -

F
_

h
' y" =

 0 
' 

coincides w
ith the above second-order differential equation. T

his m
eans that there 

m
ust be an identity w

ith respect to x, y, _y' 

F
Y

 -
F

y'x -
F

y'yy' -
F

y'y' • f (x, y, y
') =

 0. 
D

ifferentiating this w
ith respect to y', w

e get 

F
y

'y'x +
 F

y'y'y y' +
 F

y'y'y' 
• f +

 F
y

'y' 
• f i 

=
 0. 

Setting 
u =

 F
y'y', w

e obtain the partial differential equalion (PD
E

) 

du +
 y' du +

 f .1l!:.. +
 f , . 11 =

 0. 
Jx 

Jy 
Jy' 

Y
 

H
ence finding the functional, that is, finding the function F(x, y, y'), r~ducl:s 1u 

the solution of the above PD
E, and to subsequent quadrature. 

E
xistence of an E

xtrem
um

 

W
e conclude this chapter by pointing out a characteristic difficulty in the so

\ut inn 
of variational problem

s. In problem
s involving ordinary m

axim
a or m

inim
a or a 

function, the existence of a solution is guaranteed by the fundam
ental theorem

 uf 
W

eirstrass. H
ow

ever variational problem
s, even if they are m

eaningfully fornm
latt:c\, 

m
ay not have solutions. This stem

s from
 the fact that it is not, in general, possihk 

to choose the dom
ain of adm

issible functions as a 'com
pact set' for w

hich t\w
 

principle of point of accum
ulation holds. 
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\',11
111111>11.1/ l'111h/t'111

,· 11•,tl, h
1

,•,/ /i,111n
,l.i11

,·.1 
l / 

hH
 dd1111h:ncss. k

t 11s 
r1H

lS
H

lr1 lh
r ll11K

lt011,d 

f
l· 

II \'l d l 
', I I'( I h ' .' 

I 
( \ 

I h ' I '" 
( I 

(1
, 1

) 

w
ith Ilic bin1nd:11v l·n1Hlll11111s 

rta) 
r(/

1
) 

O
. 

(I .<1 I\ 

T
n fi:\ idl'as W

l' :uso assu
11w

 an i111rgral rnnslraint 

f /, y ! ,b =
 I. 

,1 

t l .<1-I) 

W
e su

p1H)SC !hat 
flt1

) and ()(1) a1'l' cn111i1111@
s i11 l11, l

1
1 

\\
11lli 

/'(
1

) 
· 0. It 

Ille\\ 
fo

llnw
s frn

m
 ( 1.<)2) that 

f
l• 

ff, 
Il,v I ~ 

Q
(.r)y 2 d., ::: 

111in 
(}(.1) 

"·' d
, 

,,,,, t, 
1J 

" 

llllll 
()(1

). 
,/',\' 

f, 

T
hus the above functional is hounded below

. N
ow

, rv
rn

 if lite k
:1sl v:d11r 111' II l'I 

is not attained, w
e can ronstrnct a sequen

ce of fim
l'lin

11s 
l',,(,) salisf'yi11g ( I A

l) 
and (1.64

) such that 
lim

 
/[y,,(.r)I 

is equal to the grcaksl l11w
n

 hn1111d
. S11ch 

:1 
II

-
)

"" 

sequ
ence is know

n as the m
inim

izin
g sequ

ence for the fu11r1i@
al 

/. 
If a m

inim
izing sequence I Y,,(x)l (or its subsequ

ence) is 
l'1rnv

n
g

c11t 
(say

, 
uniform

ly con
vergent) to a lim

it functio
n Y

(x
), then the 1'1111L"lillllal 

aU
ains a 

m
inim

um
 value for y =

 Y(x
), In fact, w

e have 
I 

I b Y
2 d

t =
 

lim
 f b Y2(x

) d
r =

 I 
11
➔

r-.\ 
,, 

(I 
II 

f
b 

fb 
Q

(x)Y
2(x

) dx =
 

lim
 

Q
(.r)Y

11 \
x) t!x. 

II
-+

""" 
rl 

II 

B
ut 

f
b 

fb 
P(x)Y

'2(x) dx :s; 
lim

 
P(x)Y

,;2(.r) dx. 
II

-
)

"
"
 

u 
(I 

T
he last result m

ay appear so
m

ew
hat slrange because one m

ay th
ink th

at th
e lt:t'l 

hand side equals the right hand side. H
ow

ever, there arc cases w
hen the rig

ht hand 
side exceeds the left hand side. B

oth possibilities are dcm
on

stratcu in 1:igs. 1.10(;1) 
and 1.IO

(b). 
T

hus w
e have 

l{Y
] ~ 

lim
 l[Y

u(x
)] 

ll-+ 
oo 

T
he seq

uence { Y,i(x)} being a m
inim

izing sequence, w
e co

nclude that the qu
antity 

If Y] is the least value and the existence of a m
inim

um
 is therefore cstahlishc:d. 

{.._
' 

R
J
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L
o

fn
d

u
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V
ru

iulio
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uh /\p
p

llca
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a 
0 

~
 a 

y (x
) 

(a) 

y 0 

(b) 

b 
X

 

b
 

.x 

F
ig. 1.10 

(a) T
he m

inim
izing function Yn(x) and lim

it function Y
(x) in the case 

w
hen the left side of the above inequality eqrn .. ls the right side, and 

(b) T
he m

inim
izing function Yn(x) and lim

it function Y
(x) in the case 

w
hen the left side of the above inequality is less than the right side. 

C
onditions for the existence of a convergent sequence { Y

n(x)} 
involve the \ 

concept of com
pactness, w

hich plays a vital role in these and m
any other problem

s. 
A

 set M
 of points (elem

ents) of a nonned space R
 (or a m

ore general m
etric space 

(R
)) is said to be com

pact in (R
), if every infinite sequence of points belongin

g 
to M

 has at least one convergent subsequence. U
sing this notion w

e m
ay rephrase 

the B
olzano-W

eirstrass theorem
 as: every bounded set of points belonging to a 

finite-dim
ensional E

uclidean space is com
pact. 

B
ut ever~, unb

ounded 
set of a 

finite-dim
en

sional E
uclidean space is noncom

p
act. 

A
n im

portant feature of infinite-dim
en

sion
al spaces is that their bound

ed 
subsets are not 

necessarily com
pact, and therefore, the 

investigation 
of these 

spaces presents difficulties. For exam
ple, the sequence of functions sin x, sin 2x, 

sin 3x, ... is bounded, but noncom
pact as a subset of the space C

[a
, b1 for fix

ed 
a and b. T

his is due 'to the fact that the values of sin ru, n =
 1, 2, 3, ... oscillate 

betw
een -

l 
and 

1 w
ith 

increasing frequency 
as 

n ~
 

0
0

 and
, therefore, 

the 
subseq

uences of this sequence do not converge uniform
ly

. B
ut it is also possihk 

to prove that every m
inim

izing sequence { Y"} m
entioned above is not only bou

nued
. 
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Variational P
roblem

s w
ith F

ixed B
oundaries 

39 

but also com
pact in the space C

[a, b] because, in this case, the absence of unifo
n

n
ly 

convergent subsequences w
ould im

ply that there is a subsequence of the num
b

er 

sequence {fr;' m}, w
hich increases indefinitely and hence the sequenc.e I ( Y,,) 

becom
es unbounded as w

ell. These properties ensure the existence of a um
fo

rm
ly 

~onvergen
t subsequence of the sequence Yn, w

hose lim
it function Y

(x) renders the 

fun
ctional m

inim
um

. 
-

-
. 

A
n a1 te·m

ativ~ approach to the abo_y_e p_roble~
 ?~ _e~istence is_ due t_o Tonelll 

(see Y
oung [6]) and is based on the notion of s~m

i-9ontin~iJy. A
 funct10n F

(P
:, 

defined in a set of P; in w
hich lim

its have a nieaning, _is -~ajd to be low
er sem

1-· 

con
tinuous a.t f o, if it s~tisfies the follow

ing condi tions: (a) F
(P

) 1s ex
ten

ded rear
. 

-· v-alui q, ._i.e.; i.ts values are-real w
ith~the pqssi~le additiop cif-{

~
_-and :-

0
0

, {b) F
(P

o) -. 

is defined and F
(P~) -t--

~
. -(c) F

(F0 ) ~ Jim
 inf F

(P
) as P

 ~
 P

0
. If these conditions 

are satisfied for each Po of the set, w
e say that F(P

) is low
er sem

i-con
tinuo

us . 

N
ow

 consider the variational problem
 for the func

tional 

/[C] ~ f f (x, y(x), y'(x)) d, 
w

here C
 is a curve y =

 y(x) joining tw
o given points a and b. T

hen it w
as show

n 

by Tonelli that I[ CJ is low
er sem

i-continuou
s for C

 belonging to any class K
 of 

curves of uniform
ly bounded lengths situated in a cube if f(x, 

y(x), 
y'(x

)) 
is 

convex in y'(x). Further ![C
J attains its m

inim
um

 in K
if K

 is closed. 

T
he link betw

een the proof of existence based on com
pactness and Tonell i' s 

approach lies in the fact that a dosed bounded set in a finite-dim
ensional space 

is com
pact and the w

ell know
n W

eirstrass principle (valid for a continuous function 

on a closed com
pact set) rem

ains valid for a low
er sem

i-continuous function, 

defined on a sequentially com
pact closc:.d set. 

The general schem
e ptesented above involv~s m

ost of the basic techniques 

for solving variational problem
s. These schem

es reduce to testing that the functional 

is bounded below
, selecting a m

inim
izing sequence, and proving the com

pactness 

of the sequence in an appropriately chosen function space. 

. _T~e~e is yet another w
ay of overcom

ing the difficulty of not having a convergent 

m
rnim

izrng sequence, to _ensure the existen
ce of an extrem

um
 as suggested by 

Y
oung ~6]. It adapt~ the idea of L. Schw

artz for constructing a dual space, and 

~m
be_ddrng the ong_ma_l space (of_adm

issible curves in our variational problem
) 

rnto its 
dual. 

To fix 
ideas, 

consider the problem
 

of m
inim

izing 
a functional 

J F(x(t ), x
' (t ), t), dt, t1 ~ t ~ t2 , w

here x(t) varies along a param
etrized arc r of 

fin
ite lengt?

. In this context F
 and rare elem

ents of dual spaces. L
et the fun

ction 

F
 belorig to som

e norm
ed space B, so that f F

 dt =
 (F

 r) 
clearl 

d r· 
. 

r 
, 

, 
y 

e m
es 

,t 

linear functional in the dual space B*. D
efining the operation EB as union of arcs 

w
e have (F, (I'1 EB T

2 )) =
 (F, I'1 ) +_ (F, T

2 )_ and (F, cI') =
 c (F

, I') =
 (cF

, I') for 

any real num
ber c. W

e see that this functw
nal is indeed bilin

ear and bound
eJ. 
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d
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/fr,•111:•11__:r_ ;ir, 

1 ;r,f1r
1 ;J; diffr;r,;r,t rr;:.;·,r,r. 

I,,, 
111i111:1.1·,1,•11, ,; ,>f 

·.rJ/1
11,1,rr. 

,1 1 ;i 
•i;in

;1 t1 ,,1 ,;1 / r,u,bJ,:m
, r;.o

1 -i}•,r, 01i·J: 

W
e fH1·,

1: Iii,: l11llc1v,1i11;_; IJIH
:',IJ<1T1 

W
h1:n iif'.:. tb

t 1n1tic1l 
r1

r b<,und~
ffj <

.fJfl1 J1
tir1 r1

·­

w
c/ I l'/J' .cd I :,cc rel 

I ·!11 /J f «1 ;, c
u

l a1n cl,:. ,,f f,,m
r,da,; ·10/uc pr<,f ,Jw

.-,, ,r, ·u,l ·/Jr,g
 

d ,t /'i;, 01111 al i:qu ;<111 ,n-,'! Thi·, w
ell r M

td11c·:. in the ·.err.e ,,/ 1/adam
arJ i rr,pl ,c·. that 

I I 11: 
· ·"

' 111 i' ,,, 
C

Y
.1'.I ·,, 

"
· 1111 iq11c ru1d dcpe«d·, u m

ti ,,,,,,u•,I y •,n !ht ini ti al/r,,,ur1dar I 
d a I" 

· I I 111', d :, d d I rn:n ti ;d ·. y·. 1 w
1

 i ·, 1 11 ,t w
e JI-pu:.ed, 1/1c u ,rr e ·. 1,r ,n dm

 g ?ari a.tic,n al 
P

11 •h.lt:111 i •: rd,,,, 11 1,1 w
e II pi ,,.ed. ·11,,, third re,1uirw

1en
t af,,,-,,,, •1

,/1 i•J, i ·. r,art. '.ul arl / 
111<:J•,i V<;, i·, 11~u

.::.:.;11 y, J/ the; 11,alhunaticaJ frm
riulo.rirJn in

 th
': fr)rrri r,f rJ1fft:r:.;rit:c! 

c
q

ri:rlJrH
J

\ i·; 
lr1 rl1;•,u

JI)(_; ()/-)·,u
•1;1f1/(.; natu

ral ph
c:nrm

itna
. fJot:, ir, no.turr; s

::.rir,r1t ~~:.; 
it',\U

111cd t,J lie: ri1;id
ly /1

x
u

J. ·r /ic; rnr:re; 
fJffJC

V
.·, r)f 

rr,
1 ;c1,·,urin? th

':rn 
JrJF

,b
t·, ·.rr,~d'. 

crr<
w

,. 'f'l1u
<, a prH

1r rn,1lhtrriatica
l rn,;dc:llin

,~ rJ
f a rr.:c.d lift fJfrJb

krr1 Trio.J kl'.l.rl tr; 1ll­
/JIJ.',1od di I fc1c11 I ial , ystem

 ·.,, lh>1 1 he c<,ne·,p•m
di fl g ·m

iati1 ,nal pr>,bkrn rr, • J ah
, 

Ii<.: ill pr,~<.:d, ,r<, 
Ilic. /o

/J,,w
ing txam

plc; rJut tr; ('aro.thtrJJr,r; ·.hr,·i;-_ 
/\ vari,11 i,\n;tJ fJr<ihk

rn !cad<, trJ the frJJl<Jw
iw

, L
ulcr-La.i

1 ra.n:
1 t. r..:(luatir1n o:-. tr,::; 

C
 

C
 

C
. 

'1 
11ccc:.'>~a

ry c
1ir11li1iu

n
 

fc1
r the: e;xi'>tc:nct o

f an cxtrc:rnurn 

Y, :..: ( I +
 X

 ,2) IIL 

w
ith ttic O

(Jundary co
nditicm

s 
. i 

x
((J) =

 y(() J =
 0, 

x( J) =
 y( J) =

 I. 

fl can he sho
w

n that the above b1,undary value problem
 i1 nr,t w

tll-po
1ed "

' that 
no r..Jiflcrentia

blc: srJlution satisfic<; the ab
rJve .')ysttm

. 

;\ ,i m
 pie geom

etrical exam
ple of non-existence uf 1,,1 uti•,n can be gi ·:er. a\ 

foll1Jw
s: T

w
o points of the x-axis are to be joined by the sborttst p<,;sible line ,,f 

c1m
1 i fl U1Jus curvature w

hich i, perpendicular to the x-ax i, at the ',o "·;:•,int\. C
k

arl: 
lbi, problem

 ha., nr, sulution. In tact, the length ,,f ·,uch a line 
1

, a
h

a
;

, greater 
1ha11 thal of the s1ra1gh1 line, J<,ining the tw

o end p1,int,. but it m
a; 

appe<,xim
ate 

thi., leng
th as closely a, desired. H

ence there ex
ists a greatc;t lrn

,er b<m
nd. but 

nu m
in

im
um

 for adm
issible curve.'). 

W
e m

ay now
 .sum

 up the forego
ing considerations abou

t the ecistence c;f an 
ex1rem

um
 in a variational problem

. Tiie c:1aracteri2ati11n of such an ex
t,em

um
, 

in the absence of an ex
istence proo

f, m
ay tum

 out to be a r,rm
1en

se. as in the 
follow

ing 
ex

am
ple ,,r O

scar Perron. L
et "' 

assum
e that 

there exists 
a largest 

positive integer N. T
hu

s N
 :?-n for any positive integer n. ff I/

>
 I, then clearly 

N. 2 >
 N. B

ut N
 <'. N. 2 by o

ur hypothesis leads to N
2 ~ N

 T
his gi':e1 ;, ~ J. A

lthough 
there is nothing w

rong in the proof, the nonsense arises from
 our "rigin

al assum
ption 

of the existence of a largest positive integer. O
ne m

ay arrive at a sim
ilar nonsense 

if necessary or sufficien
t conditions for the extrem

om
 of a f unu

io
naJ are derived

. 
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s with Fi.red Boundaries 
-4-1 

w
itht)ut first dw

cking w
ht'tht'r such ~m ex.1:rt'm1m1 is attained in the cbss of adm

issible 
funrtil)Ib

. Thi:-
h,1s a hearing on a basic difficulty arising in the m

odelling of a 
physil'Jl phcnom

ennn
. Tht? existence of solutions in J rrithem

atical m
odel m

ust 
realistil-~1lly rdlCL't L

)u
r physkal experience. 
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T
est for an extrem

um
 the functional 

. 
/l_rtx)] =

 f 1 txy +
 y2 -

2
/ y') dx. y(O) =

 1, y(l) =
 2. 

0 
.

. 

.-\ns. 
A

n extrem
um

 is not ilchieved on the class ·of continuous functions. 

2. 
Find the extrem

als of the functional 

fiy(.\)] =
 f ·" ll +

 v2) 
,, 

dr . 
. l

Q
 

_)' 
-

A
ns. 

y =
 sinh (C

1 x +
 C

2 ) 

3. 
Find tl1e extrem

als of the functional 

/Iy(x)] =
 r 1 (2.\y +

 y"' 2) dx. 
xo 

' 

. 7 
y =

 ·;, +
 C

1 x
5 +

 C
2 x

4 +
 C

3 x_i +
 C

4 x
2 +

 C
5 x +

 C
6 . 

A
ns. 

4. 
Find the E

uler-O
strogradsky equation for the functional 

l{11{x y. :)] =
 fJf [ ( ~ r + ( ~ r + (

:
 r + 2+x dy d: 

A
ns. 

a
211 

a
211 

a
211 

-
+

 -
+

 -
-

f't \' 
\' 

-) 
:i 

1 
.::i,,·1 

=t-2 
-

-
\· '.

•
.:.. 

(7:\'-
u_y-

U
l 



{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }

