VARIATIONAL PROBLEMS WITH FIXED Boundaries

1.1 The Concept of Variation and Its Properties

As already pointed out in the introduction, a variable quantity $I[y(x)]$ is a functional dependent on a function $y(x)$ if to each function $f(x)$ belonging to a certain class of functions \mathbb{C}, there is a definite value of I. Thus there is a correspondence between a given function $y(x)$ and a number I.

By the increment or variation δy of the argument $y(x)$ of a functional. I, we mean the difference $\delta y\left(=y(x)-y_{1}(x)\right)$ between two functions belonging to a certain class. A functional $I[y(x)]$ is said to be continuous if a small change in $y(x)$ results in a small change in $\Pi y(x)]$. This definition is, however, somewhat imprecise since we have not specified what we exactly mean by the phrase 'a small change in $y(x)^{\prime}$. In other words, under what conditions should we consider the curves $y=$
$y(x)$ in $y(x)$ and $y=y_{1}(x)$ close?

One way of specifying the closeness of $y(x)$ and $y_{1}(x)$ is to say that the absolute value of their difference given by $\left|y(x)-y_{1}(x)\right|$ is small for all x for which $y(x)$ and $y_{1}(x)$ are defined. When this happens, we say $y(x)$ is close to $y_{1}(x)$ in the sense of zero-order proximity. But with this definition, the functional

$$
\begin{equation*}
I[y(x)]=\int_{a}^{b} F\left(x, y(x), y^{\prime}(x)\right) d x \tag{1.1}
\end{equation*}
$$

which occurs in many apptications, is seldom continuous due to the presence of the argument $y^{\prime}(x)$. This the curves $y=y(x)$ and $y=y_{1}(x)$ such that both $\left|y(x)-y_{1}(x)\right|$ and $\left|y^{\prime}(x)-y_{1}^{\prime}(x)\right|$ are small for all values of x for which these functions are prescribed. We then say that these two curves are close in the sense of first-order proximity. In general, the curves $y=y(x)$ and $y=y_{1}(x)$ are said to be close in the sense of nth order proximity if $\left|y(x)-y_{1}(x)\right|,\left|y^{\prime}(x)-y_{1}^{\prime}(x)\right|, \ldots,\left|y^{(n)}(x)-y_{1}^{(n)}(x)\right|$ are small for values of x for which these functions are defined.

Figure T. 1 shows two curves which are close in the sense of zero-order proximity but not in the sense of first-order proximity. Figure 1.2 shows two curves which are close in the sense of first-order proximity. It is clear from the above definitions that if two rurves are close in the sense of nth order proximity, then they are certainly, close in the sense of any lower order (say, $(n-1)$ th) proximity.

We are now in a position to refine the concept of the continuity of a functional. The functional $I[y(x)]$ is said to be continuous at $y=y_{0}(x)$, in the sense of nth

Fig. 1.1 Curves close in the sense of zero-order proximity.

Fig. 1.2 Curves close in the sense of first-order proximity.
order proximity, if given any positive number ε, there exists a $\delta>0$ such that

$$
\begin{aligned}
& \left|I[y(x)]-I\left[y_{0}(x)\right]\right|<\varepsilon \text { for }\left|y(x)-y_{0}(x)\right|<\delta \\
& \left|y^{\prime}(x)-y_{0}^{\prime}(x)\right|<\delta, \ldots,\left|y^{(n)}(x)-y_{0}^{(n)}(x)\right|<\delta
\end{aligned}
$$

Example 1. Show that the functional

$$
I[y(x)]=\int_{0}^{1} x^{3}\left[1+y^{2}(x)\right]^{1 / 2} d x
$$

defined on the set of functions $y(x) \in C[0,1]$, (where $C[0,1]$ is the set of all continuous functions on the closed interval $0 \leq x \leq 1$) is continuous on the function $y_{0}(x)=x^{2}$ in the sense of zero-order proximity.

Solution. Put $y(x)=x^{2}+\alpha \eta(x)$, where $\eta(x) \in C[0,1]$ and α is arbitrarily small. Then,

$$
I y(x)]=I\left[x^{2}+\alpha \eta(x)\right]=\int_{0}^{1} x^{3}\left[1+\left(x^{2}+\alpha \eta(x)\right)^{2}\right]^{1 / 2} d x
$$

Passing to the limit $\alpha \rightarrow 0$, we find that,

$$
\left.\lim _{\alpha \rightarrow 0} I[y(x)]=\int_{0} x^{3}\left(1+x^{4}\right)^{1 / 2} d x=\Pi x^{2}\right\rceil
$$

and this establishes the continuity of the functional on $y_{0}(x)=x^{2}$.
It is, however, possible to define the notion of distance $\rho\left(y_{1}, y_{2}\right)$ between two curves $y=y_{1}(x)$ and $y=y_{2}(x)$ (with $\left.x_{0} \leq x \leq x_{1}\right)$ as

$$
\begin{equation*}
\rho\left(y_{1} ; y_{2}\right)=\max _{\left(x_{0} \leq x \leq x_{1}\right)}\left|y_{1}(x)-y_{2}(x)\right| \tag{1.2}
\end{equation*}
$$

Clearly, with this metric, we can introduce the concept of zero-order proximity. This notion can be extended to the case of nth order proximity of two curves $y=y_{1}(x)$ and $y=y_{2}(x)$ (admilting continuous derivatives upto order n inclusive)
if one introduces the metric

$$
\begin{align*}
& \rho\left(y_{1}, y_{2}\right)=\sum_{p=1}^{n} \max _{\left(x_{0} \leq x \leq x_{1}\right)}\left|y_{1}^{(p)}(x)-y_{2}^{(p)}(x)\right| \\
& \text { Let us now introduce the concept of a linear funct } \tag{1.3}\\
& \text { med linear space } M \text { tit }
\end{align*}
$$

it it satisfies space M of the functions $y(x)$. Thinctional $I[y(x)]$ defined in the
(i) $I[c y(x)]=c I[y(x)]$,
where c is an arbitrary constant,
(ii) $I\left[y_{1}(x)+y_{2}(x)\right]=I\left[y_{1}(x)\right]+I\left[y_{2}(x)\right]$,
where $y_{1}(x) \in M$ and $y_{2}(x) \in M$.
Take, for instance, the functional

$$
I[y(x)]=\int_{a}^{b}\left[y^{\prime}(x)+2 y(x)\right] d x
$$

defined in the space $C^{1}[a, b]$, which consists of the set of all functions admitting continuous first order derivatives in $[a, b]$. Clearly, l in (1.4) is a linear functional.

It can, however, be shown that a functional $I[y(x)]$ is linear if (a) it is continuous and, (b) for any $y_{1}(x) \in M$ and $y_{2}(x) \in M$, satisfies the condition it continuous

$$
\begin{aligned}
& I\left[y_{1}(x)\right]+I\left[y_{2}(x)\right]=I\left[y_{1}(x)+y_{2}(x)\right] \\
& \text { us now define the }
\end{aligned}
$$

Let us now define the variation of a functional $l[y(x)]$. The increment ΔI is
which may be written in the form

$$
\Delta I=L[y(x), \delta y]+\beta[y(x), \delta y] \max |\delta y|
$$

Here, $L[y(x), \delta y]$ is a functional linear in δy and $\beta[y(x), \delta y] \rightarrow 0$ as the maxim (1.5) value of δy (given by max $|\delta y|$) $\rightarrow 0$. This sort of division of the increment ΔI a single variable given by

$$
\begin{aligned}
\Delta f(x) & =f(x+\Delta x)-f(x) \\
& =A(x) \Delta x+\beta(x, \Delta x) \Delta x
\end{aligned}
$$

Here, $A(x) \Delta x$, known as the differential $d f$, is the principal part of the (1.6) and is linear in Δx. By the same tol:en, the part $L[y(x), \delta y]$ is of the increment of the functional and is denoted by δI.

An alternative definition of the variation δI of a functional I can be given. Consider the functional $I[y(x)+\alpha \delta y]$ for fixtd y and δy and different values of the parameter α.

Now using (1.5) the increment Δl can be written as

$$
\begin{aligned}
\Delta I & =I[y(x)+\alpha \delta y]-I[y(x)] \\
& =L[y, \alpha \delta y]+\beta[y, \alpha \delta y]|\alpha| \max |\delta y| .
\end{aligned}
$$

The derivative of $I[y(x)+\alpha \delta y]$ with respect to α at $\alpha=0$ is

$$
\begin{aligned}
\lim _{\Delta \alpha \rightarrow 0} \frac{\Delta I}{\Delta \alpha} & =\lim _{\alpha \rightarrow 0} \frac{\Delta I}{\alpha}=\lim _{\alpha \rightarrow 0} \frac{L[y, \alpha \delta y]+\beta[y, \alpha \delta y]|\alpha| \max |\delta y|}{\alpha} \\
& =\lim _{\alpha \rightarrow 0} \frac{L[y, \alpha \delta y]}{\alpha}+\lim _{\alpha \rightarrow 0} \frac{\beta[y, \alpha \delta y]|\alpha| \max |\delta y|}{\alpha} \\
& =L[y, \delta y]=\delta I,
\end{aligned}
$$

since by linearity $L[y, \alpha \delta y]=\alpha L[y, \delta y]$ and $\beta \rightarrow 0$ as $\alpha \rightarrow 0$. Hence the variation of a functional $I[y(x)]$ is equal to

$$
\frac{\partial}{\partial \alpha} I[y(x)+\alpha \delta y] \text { at } \alpha=0
$$

Definition. A functional $I[y(x)]$ attains a maximum on a curve $y=y_{0}(x)$, if the values of I on any curve close to $y=y_{0}(x)$ do not exceed $I\left[y_{0}(x)\right]$. This means that $\Delta I=I[y(x)]-I\left[y_{0}(x)\right] \leq 0$. Further, if $\Delta I \leq 0$ and $\Delta I=0$ only on $y=y_{0}(x)$, we say that a strict maximum is attained on $y=y_{0}(x)$. In the case of a minimum of I on $y=y_{0}(x), \Delta I \geq 0$ for all curves close to $y_{0}(x)$ and a strict minimum is defined in the same way. .

Theorem. If a functional $I[y(x)]$ attains a maximum or minimum on $y=y_{0}(x)$, where the domain of definition belongs to certain class, then at $y=y_{0}(x)$,

$$
\begin{equation*}
\delta I=0 \tag{1.7}
\end{equation*}
$$

Proof. For fixed $y_{0}(x)$ and $\left.\delta y, I\left[y_{0}(x)+\alpha \delta y\right)\right]=\Psi(\alpha)$ is a function of α and this reaches a maximum or minimum for $\alpha=0$. Thus $\Psi^{\prime}(0)=0$ leading to $\left.\frac{\partial}{\partial \alpha} I\left[y_{0}(x)+\alpha \delta y\right]\right|_{\alpha=0}=0$, ie., $\delta I=0$. This proves the theorem.

However, when we talk of maximum or minimum, we mean the largest or smallest value of the functional, relative to values of the functional on close-lying curves. But we have already seen that the closeness of curves may be understood in different ways depending on the order of proximity of the curves.

If a functional $I[y(x)]$ attains a maximum or minimum on the curve $y=y_{0}(x)$ with respect to all curves $y=y(x)$ such that $\left|y(x)-y_{0}(x)\right|$ is small, then the maximum or minimum is said to be strong.

If, on the other hand, $I[y(x)]$ attains a maximum or minimum on the curve $y=y_{0}(x)$ with respect to all curves $y=y(x)$ in the sense of first order proximity, i.e., $\left|y(x)-y_{0}(x)\right|$ and $\left|y^{\prime}(x)-y_{0}^{\prime}(x)\right|$ are both small, then the maximum or minimum is said to be weak. It is quite clear that if a strong maximum (or minimum) of a functional $l[y(x)]$ is attained on the curve $y=y_{0}(x)$, then a weak maximum (or minimum) is also attained on the same curve. This follows from the fact that if two curves are close in the sense of first-order proximity, then they are definitely close in the sense of zero-order proximity as well.

This theorem can be readily extended to functional dependent on several

8 Calculus of Variations with Applications
unknown functions, or dependent on one or several functions of any number of variables, e.g., or $\quad I\left[y_{1}(x), y_{2}(x), \ldots, y_{n}(x)\right]$ or $I\left[z\left(x_{1}, x_{2}, \ldots, x_{m}\right)\right]$

$$
I\left[z_{1}\left(x_{1}, x_{2}, \ldots, x_{m}\right), z_{2}\left(x_{1}, x_{2}, \ldots, x_{m}\right), \ldots, z_{p}\left(x_{1}, x_{2}, \ldots, x_{m}\right)\right] \text {. }
$$

The necessary condition for extremum, in all these cases, is still, given by $\delta I=0$, $I[y(x)$ the variation δ is defined in exactly the same way as that for a functional $I y(x)]$ mine for variational probiom Q.P. 5 m intate Euier's ogn for variational probiom 1.2 Euler's Equation Eule Eulerts eqn:

Let us examine the extremum of the functional

$$
\begin{equation*}
I[y(x)]=\int_{a}^{b} F\left(x, y(x), y^{\prime}(x)\right) d x \tag{1.8}
\end{equation*}
$$

subject to the boundary conditions $y(a)=y_{1}$ and $y(b)=y_{2}$, where y_{1} and y_{2} are prescribed at the fixed boundary points a and b. We assume that $F\left(x, y, y^{\prime}\right)$ is three times differentiable. We have already shown that the necessary condition for an this condition to (1.8), and assume its variation must vanish. We shall now apply is achieved, admits of continuous first-ore admissible curves on which an extremum that the curve on which an extremum firder derivatives. It can be pluved, however, order derivative also (see Section 1.9). Let $y=y(x)$ be the curve which 1.9).
is twice differentiable and satisfies the extremizes the functional (1.8) such that $y(x)$ Let $y=\bar{y}(x)$ be an admissible curve above boundary conditions (see Fig. 1.3). can be included in a one-parameter family of curves

$$
\begin{equation*}
y(x, \alpha)=y(x)+\alpha[\bar{y}(x)-y(x)] \tag{1.9}
\end{equation*}
$$

For $\alpha=0, y(x, \alpha)=y(x)$ and for $\alpha=1, y(x, \alpha)=\bar{y}(x)$.
The difference $\bar{y}(x)-y(x)$ is the variation δy of the function y (see Fig. 1.4) and is similar to the role played by Δx, the increment in x while considering the extrema of a function $f(x)$. Now on the curves of the family (1.9), the functional corresponds to $\alpha=0$, it follows that $\Psi(\alpha)$ is extremizud for $\alpha=0$. This implies

$$
\begin{equation*}
\left(\frac{d \Psi}{d \alpha}\right)_{\alpha=0}=0 \tag{1.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\Psi(\alpha)=\int_{a}^{b} F\left(x, y(x, \alpha), y^{\prime}(x, \alpha)\right) d x \tag{1.11}
\end{equation*}
$$

Fig. 1.3 Extremizing curve joining two fixed points.

Fig. 1.4 Extremizing curve and an admissible curve between two fixed points.

Using (1.9) and (1.11), it follows that

$$
\begin{equation*}
\Psi^{\prime}(\alpha)=\int_{a}^{b}\left[F_{y}\left(x, y(x, \alpha), y^{\prime}(x, \alpha)\right)^{\prime} \delta y+F_{y^{\prime}}\left(x, y(x, \alpha), y^{\prime}(x, \alpha)\right) \delta y^{\prime}\right] d x \tag{1.12}
\end{equation*}
$$

where a subscript denotes partial derivative with respect to the indicated variable.
Further, the variation $\delta y(=\bar{y}(x)-y(x))$ is a function of x and can be differentiated once, or several times, such that $(\delta y)^{\prime}=\bar{y}^{\prime}(x)-y^{\prime}(x)=\delta y^{\prime}$. Finally, (1.10) gives from (1.12) the relation

$$
\begin{equation*}
\int_{a}^{b}\left[F_{y}\left(x, y(x), y^{\prime}(x)\right) \delta y+F_{y^{\prime}}\left(x, y(x), y^{\prime}(x)\right) \delta y^{\prime}\right] d x=0 \tag{1.13}
\end{equation*}
$$

Let us integrate the second term by parts subject to the boundary conditions $(\delta y)_{a}=0$ and $(\delta y)_{b}=0$ (as a consequence of y being fixed at $x=a$ and $x=b$). This ${ }^{\text {º }}$ gives from (1.13),

$$
\begin{equation*}
\int_{a}^{b}\left[F_{Y^{-}}-\frac{d}{d x} F_{y^{\prime}}\right] \delta y d x=0 \tag{1.14}
\end{equation*}
$$

In view of the assumptions made on $F\left(x, y(x), y^{\prime}(x)\right)$ and the extremizing curve $y(x)$, it follows that $F_{y}-\frac{d}{d x} F_{y^{\prime}}$ on the curve $y(x)$ is a given continuous function, while δy is an arbitrary continuous function, subject to the vanishing of δy at $x=a$ and $x=b$.

Before proceeding further, we now prove the following lemma: [If for every
tinuous function $\eta(x)$, continuous function $\eta(x)$,

$$
\begin{equation*}
\int_{a}^{b} \Phi(x) \eta(x) d x=0 \tag{1.15}
\end{equation*}
$$

where $\Phi(x)$ is continuous in the closed interval $[a, b]$, then $\Phi(x) \equiv 0$ on $[a, b]$.

Proof. Assume that $\Phi(x) \neq 0$ (positive, say) at a point $x=\bar{x}$ in $a \leq x \leq b$. By virtue of the continuity of $\Phi(x)$, it follows that $\Phi(x) \neq 0$ and maintains positive sign in a small neighbourhood $x_{0} \leq x \leq x_{1}$ of the point \bar{x}. Since $\eta(x)$ is an arbitrary continuous function, we might choose $\eta(x)$ such that $\eta(x)$ remains positive in $x_{0} \leq x \leq x_{1}$ but vanishes outside this interval (see Fig. 1.5). It then follows from (1.15) that

$$
\begin{equation*}
\int_{a}^{b} \Phi(x) \eta(x) d x=\int_{x_{0}}^{x_{1}} \Phi(x) \eta(x) d x>0 \tag{1.16}
\end{equation*}
$$

since the product $\Phi(x) \eta(x)$ remains positive everywhere in $\left[x_{0}, x_{1}\right]$. The contradiction between (1.15) and (1.16) shows that our original assumption $\Phi(x) \neq 0$ at some point \bar{x} must be wrong and hence $\Phi(x) \equiv 0$ on $[a, b]$.

Fig. 1.5 A continuous function which is positive in an interval but vanishes outside.

Invoking this fundamental lemma; and from (1.14) we conclude, that

$$
\begin{equation*}
F_{y}-\frac{d}{d x} F_{y^{\prime}}=0 \tag{1.17}
\end{equation*}
$$

on the extremizing curve $y=y(x)$. This equation is known as Euler's equation and the integral curves of this equation are known as extremals. It should be noted that the functional (1.8) can attain an extremum only on extremals. On expanding (1.17) we find that

$$
\begin{equation*}
F_{y}-F_{x y^{\prime}}-F_{y y^{\prime}} y^{\prime}-F_{y^{\prime} y^{\prime} y^{\prime \prime}}=0 \tag{1.18}
\end{equation*}
$$

which is, in general, a second-order differential equation in $y(x)$ (although sometimes it may reduce to a finite equation). The two arbitrary constants appearing in the solution $y(x)$ are determined from the boundary conditions $y(a)=y_{1}$ and $y(b)=y_{2}$.

It should be emphasized, however, that the existence of the solution of (1.17) satisfying the above boundary conditions cannot always be taken for granted, and even if a solution exists, it may not be unique. However, in many problems, the existence of a solution is evident from the geometrical or physical significance of the problem. Hence in such cases, if the existence of solution of Euler's equation is unique, then this solution will provide the solution of the variational problem.
(ri)
Q. I' Faxaple 2. Teat lo r an extucmum the fumelumal

1
 conditions, $y(())=1, v(1)=2$ 'Thus an extremum came be achieved in the class of continuous functions.

$$
y=\frac{\lim m}{\sqrt[j n n]{2 n} n}
$$

(1) $)^{2}{ }^{p}$ Example 3 . Teat for extemum the functional

1

4 ", ", ", "we find that $C_{1}=0, C_{2}=1$. Thus the extremum can be achieved only on the curve $y=\sin x$

In the problems cited above, Euler's equation is readily integrable. But this is not always possible. In what follows that we consider some cases, where (ha), Euler's equation admits of integration.
(i) In this case f ' in (1.8) is a function of x and y only. Then the Euler equation reduces to $f_{y}(x, y)=($). This finite equation, when solved for y, does not involve any arbitrary constant. Thus, in general, it is not possible to find y satisfying the boundary conditions, $y(a)=y_{1}$, and $y(b)=y_{2}$ and as such this variational problem does not, in general, admit of a solution. Example 2 cited above is an illustration of such a problem.
(ii) F^{\prime} in (1.8) depends only on x and y^{\prime}. Here Euler's equation becomes

$$
\begin{equation*}
\frac{d}{d x} F_{y^{\prime}}\left(x, y^{\prime}\right)=0 \tag{1.19}
\end{equation*}
$$

which has an integral $l_{y}^{\prime}\left(x, y^{\prime}\right)=C_{1}$, a constant. Since this relation does not contain y, it can be solved for y^{\prime} as a function of x. Another integration leads to a solution involving two arbitrary constants which can be found from the boundary conditions. .

$$
\begin{aligned}
& \text { QP Example 4. Find the extremum of } \\
& \qquad \| y(x) \left\lvert\,=\int_{x_{0}}^{11} \frac{\left(1+y^{\prime 2}\right)^{1 / 2}}{x} d x\right.
\end{aligned}
$$

Solution. Before we embark on the solution, it may be noticed that the functional t may be recognized as the time spent on translation along the curve $y=y(x)$ from one point to another, if the rate of motion $v=(d s / d t)$ is equal to x. This is due to the fact that $d s=\left(1+y^{\prime 2}\right)^{1 / 2} d x$.

Since the functional is independent of y, Euler's equation leads to

$$
\begin{equation*}
y^{\prime}=C_{1} x\left(1+y^{\prime 2}\right)^{1 / 2} \tag{1.20}
\end{equation*}
$$

$y^{\prime}=\tan t, t$ being a parameter. Then (1.20)

$$
\begin{equation*}
d y=\tan t d x=\bar{C}_{1} \sin t d t \tag{1.21}
\end{equation*}
$$

which on integration leads to

$$
y=-\bar{C}_{1} \cos t+C_{2}
$$

Elimination of t from the expressions for x and y then gives the extremals as

$$
x^{2}+\left(y-C_{2}\right)^{2}=\bar{C}_{1}^{2}
$$

which is a family of circles.
(iii) F in (1.8) is dependent on y and y^{\prime} only. In this case Euler's equation reduces to

But

$$
\begin{equation*}
F_{y}-F_{y y^{\prime} y^{\prime}}-F_{y^{\prime} y^{\prime}} y^{\prime \prime}=0 \tag{1.22}
\end{equation*}
$$

$$
\begin{aligned}
\frac{d}{d x}\left(F-y^{\prime} F_{y^{\prime}}\right) & =F_{y} y^{\prime}+F_{y^{\prime} y^{\prime \prime}}-y^{\prime \prime} F_{y^{\prime}}-F_{y y^{\prime} y^{\prime}}-F_{y^{\prime} y^{\prime} y^{\prime \prime} y^{\prime}} \\
& =y^{\prime}\left(F_{y}-F_{y y^{\prime} y^{\prime}}-F_{y^{\prime} y^{\prime} y^{\prime \prime}}\right)
\end{aligned}
$$

Thus by virtue of (1.22), Euler's equation has the first integral

$$
\begin{equation*}
F-y^{\prime} F_{y^{\prime}}=C_{1} \tag{1.23}
\end{equation*}
$$

where C_{1} is a constant. This equation may be integrated further after solving for y^{\prime} and separation of variables.

Example 5. [Find the curve joining given points A and B which is traversed by a particle moving under gravity from A to B in the shortest time (ignore friction along the curve and the resistance of the medium). This is known as the Brachistochrone problem to which we have alluded before.

Solution. Fix the origin at A with x-axis horizontal and y-axis vertically downward. The speed of the particle $d s / d t$ is given by $(2 g y)^{1 / 2}, g$ being the acceleration due to gravity. Thus the time taken by the particle in moving from $A(0,0)$ to $B\left(x_{1}, y_{1}\right)$ is

$$
\begin{align*}
& t[y(x)]=\frac{1}{\sqrt{2 g}} \int_{0}^{x_{1}} \frac{\sqrt{1+y^{\prime 2}}}{\sqrt{y}} d x \\
& y(0)=0, \quad y\left(x_{1}\right)=y_{1} \tag{1.24}
\end{align*}
$$

 simplification, the relation
r,

$$
y\left(1+y^{\prime \prime}\right)=c_{1}^{\prime} \quad y \quad i{ }^{1} \because^{\prime}(12 \%
$$

$3\left(1+\cot ^{2} 0\right)=C_{1} y^{\prime}=$ cot t, 1 being a parameter Then (125) gives.
y cosec $\left(-c_{1}\right.$
$y=c_{1} \sin ^{\prime}$ Now,
$y=c_{1}\left(\frac{-\cos 2 t}{2}\right) \quad d x=\frac{d y}{y^{\prime}}=\frac{2 C_{1} \sin t \cos t d t}{\cot t}=C_{1}(1-\cos 2 t) d t$
$\frac{d y}{d t} \frac{C_{2}}{2} \frac{1}{2}$ which gives, on integration, the equation

$1 \frac{d y}{d}=c \sin t \quad x-C_{2}=\frac{C_{1}}{2}(2 t-\sin 2 t)$
 Putting $2 t=t_{1}$ and remembering that $y=5$ at $x=0$, we find that $C_{2}=0$. Thus (1.26) and (1.27) give the desired extremals in the parametric form

$$
x=\frac{C_{1}}{2}\left(t_{1}-\sin t_{1}\right), \quad y=\frac{C_{1}}{2}\left(1-\cos t_{1}\right)
$$

 csintrex $a d x$
C_{1} is determined by the fact that the cycloid passes through $B\left(x_{1}, 1,1\right)$.
Example 6. Find the curvewith fixed boundary points such that its rotation about the axis of abscissae give rise to a surface of revolution of roimimum surface area.
maxemurn lorca
Solution. The area of the surface of revolution (Fig. 16, is

$$
S\lceil y(x)]=2 \pi \int_{x_{1}}^{x_{2}} y \sqrt{1+y^{\prime 2}} d x
$$

where the end points A and B of the curve $y=y(x)$ have x-coordinates in and x_{2}. Since the integrand is a function of y and y^{\prime} only, a first integral of Euler's equation is

$$
y \sqrt{1+y^{\prime 2}}-\frac{y y^{\prime 2}}{\sqrt{1+y^{\prime 2}}}=C_{1}
$$

which reduces to $y / \sqrt{1+y^{\prime 2}}=C_{1}$. To integrate this equation, we put $y^{\prime}=\sinh t$. Then, clearly,

$$
\begin{equation*}
y=C_{1} \cosh t, \quad d x=\frac{d y}{y^{\prime}}=C_{1} d t \tag{1.28}
\end{equation*}
$$

The second equation of (1.28) gives on integration the relation

$$
\begin{equation*}
x=C_{1} t+C_{2} \text { with } y=C_{1} \cosh t \tag{1.29}
\end{equation*}
$$

Fig. 1.6 Surface of revolution with minimum surface area.
The elimination of t from (1.29) gives as extremals

$$
y=C_{1} \cosh \frac{x-C_{2}}{C_{1}}
$$

which constitutes a two-parameter family of catenaries. The constants C_{1} and C_{2} are determined from the conditions, that the given curve passes through the given points A and B.

As a last example of the extremum of a functional, we consider the following problem of gas dynamics.

Example 7. To determine the shape of a solid of revolution moving in a flow of gas with least resistance.

Solution. Referring to Fig. 1.7, assume that the gas density is sufficiently small such that the gas molecules are mirror reflected from the surface of the solid. The component of the gas pressure normal to the surface is

$$
\begin{equation*}
p=2 \rho v^{2} \sin ^{2} \theta \tag{1.30}
\end{equation*}
$$

where ρ, v and θ denote the density of the gas, the velocity of the gas relative to the solid, and the angle between the tangent at any point of the surface with the direction of flow.

The pressure given by (1.30) is normal to the surface and one can write down the force component along the x-axis acting on a ring $P Q$ of width $d s\left(=\sqrt{1+y^{\prime 2}} d x\right)$ and radius $y(x)$ in the form

$$
\begin{equation*}
d F=2 \rho v^{2} \sin ^{2} \theta \cdot\left[2 \pi y \sqrt{1+y^{\prime 2}}\right] \sin \theta d x \tag{1.31}
\end{equation*}
$$

Fig. 1.7 Solid of revolution experiencing least resistance in a gas flow.
Hence the total force along the x-direction is

$$
\begin{equation*}
F=\int_{0}^{l} 4 \pi \rho v^{2} \sin ^{3} \theta \cdot \sqrt{1+y^{\prime 2}} y d x \tag{i.32}
\end{equation*}
$$

To make further progress, we assume

$$
\sin \theta=\frac{y^{\prime}}{\left(1+y^{\prime 2}\right)^{3 / 2}} \approx y^{\prime}
$$

where the slope y^{\prime} is taken to be small. Thus from (1.32), the total resistance experienced by the body is

$$
\begin{equation*}
F=4 \pi \rho v^{2} \int_{0}^{l} y^{\prime 3} y d x \tag{1.33}
\end{equation*}
$$

The problem now is to find $y=y(x)$ for which F is minimum. Thus (1.33) constitutes a variational problem with the boundary conditions

$$
\begin{equation*}
y(0)=0, \quad y(l)=R \tag{1.34}
\end{equation*}
$$

Since the integrand in (1.33) depends on y and y^{\prime} only, a first integral of Euler's equation is

Multiplying (1.35) by y^{\prime} and integrating, we get

$$
F-y^{\prime} \dot{F}_{y}^{\prime}=C
$$

$$
\begin{equation*}
y^{\prime 3}-3 \frac{d}{d x}\left(y y^{\prime 2}\right)=0 \tag{1.35}
\end{equation*}
$$

$$
\begin{aligned}
& y^{13} y-y^{\prime} 3 y^{\prime 2} \cdot y=c \\
& y^{13} y-3 y^{13} y=c
\end{aligned}
$$

$$
y^{\prime 3} y=C_{1}^{3}
$$

$\frac{3}{4} y^{4 / 3}=c^{y / 3} x+7$

$$
-2 y^{13} y=c
$$

C_{1} being a constant. One more integration gives

$$
\begin{equation*}
y=\left(C_{2} x+C_{3}\right)^{3 / 4} \tag{1.36}
\end{equation*}
$$

Using the boundary conditions (1.34), we obtain

$$
C_{2}=\frac{R^{4 / 3}}{l}, \quad C_{3}=0
$$

Thus the required function $y(x)$ is given by

$$
y(x)=R\left(\frac{x}{l}\right)^{3 / 4}
$$

If F in (1.8) is linear in y^{\prime} such that

$$
F\left(x, y, y^{\prime}\right)=M(x, y)+N(x ; y) y^{\prime}
$$

then Euler's equation reduces to

$$
\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}=0
$$

which is a finite equation, and not a differential equation. Thus the curve defined by the above equation does not, in general, satisfy the boundary conditions at $x=a$ and b. Clearly, in this case the variational problem (1.8) does not have (in general) a solution in the class of continuous functions. The reason for this lies in the fact, that, when the above equation holds in some domain of the $x y$-plane, then the integral

$$
I[y(x)]=\int_{a}^{b} F\left(x, y, y^{\prime}\right) d x=\int_{a}^{b}(M d x+N d y)
$$

U.umes independent of the path of integration. Thus the functional is the same on all admissible curves leading to a meaningless variational problem.

1.3 Variational Problem for Functionals of the Form

$$
\int_{a}^{b} F\left(x, y_{1}(x), y_{2}(x), \ldots, y_{n}(x), y_{1}^{\prime}(x), y_{2}^{\prime}(x), \ldots, y_{n}^{\prime}(x)\right) d x
$$

where the function F is differentiable three times with respect to all its arguments.
To find the necessary conditions for the extremum of the above functional, we consider the following boundary conditions for $y_{1}(x), y_{2}(x), \ldots, y_{n}(x)$:

$$
\begin{align*}
& y_{1}(a)=Y_{1}, y_{2}(a)=Y_{2}, \ldots, y_{n}(a)=Y_{n} \tag{1.37a}\\
& y_{1}(b)=Z_{1}, y_{2}(b)=Z_{2}, \ldots, y_{n}(b)=Z_{n} \tag{1.37b}
\end{align*}
$$

where $Y_{1}, Y_{2}, \ldots, Z_{1}, Z_{2} \ldots$ are constants.
We vary only one of the functions $y_{j}(x)(j=1,2, \ldots, n)$, keeping the others fixed. Then the above functional reduces to a functional dependent on, say, only
one of the functions $y_{i}(x)$. Thus the function $y_{i}(x)$ having a continuous derivative must satisfy Euler's equation

$$
F_{y_{i}}-\frac{d}{d x} F_{y_{i}^{\prime}}=0
$$

where the boundary conditions on $y_{i}(x)$ at $x=a$ and $x=b$ are utilized from (1.37a) and (1.37b).

Since this argument applies to any function $y_{i}(x)(i=1,2, \ldots, n)$, we obtain a system of second-order differential equations

$$
\begin{equation*}
F_{y_{i}}-\frac{d}{d x} F_{y_{i}^{\prime}}=0 \quad(i=1,2, \ldots, n) . \tag{1.38a}
\end{equation*}
$$

These define, in general, a $2 n$-parameter family of curves in the space $x, y_{1}, y_{2}, \ldots, y_{n}$ and provide the family of extremals for the given variational problem.

Let us illustrate the above principle by considering a problem from optics.
Example 8. Derive the differential equations of the lines of propagation of light in an optically non-homogeneous medium with the speed of light $C(x, y, z)$.

Solution. According to well known Fermat's law, light propagates from one point to another point along a curve, for which, the time T of passage of light will be minimum.

If the equation of the desired path of the light ray be $y=y(x)$ and $z=z(x)$; then clearly,

$$
\begin{equation*}
T=\int_{x_{1}}^{x_{2}} \frac{d s}{C}=\int_{x_{1}}^{x_{2}} \frac{\sqrt{1+y^{\prime 2}+z^{\prime 2}}}{C(x, y, z)} d x \tag{1.38b}
\end{equation*}
$$

where $d s$ is a line element on the path.
Using (1.5), one gets the system of Euler's equations

$$
\begin{aligned}
& \frac{\sqrt{1+y^{\prime 2}+z^{\prime 2}}}{C^{2}} \frac{\partial C}{\partial y}+\frac{d}{d x}\left[\frac{y^{\prime}}{C \sqrt{1+y^{\prime 2}+z^{\prime 2}}}\right]=0 \\
& \frac{\sqrt{1+y^{\prime 2}+z^{\prime 2}}}{C^{2}} \frac{\partial C}{\partial z}+\frac{d}{d x}\left[\frac{z^{\prime}}{C \sqrt{1+y^{\prime 2}+z^{\prime 2}}}\right]=0
\end{aligned}
$$

which determine the path of the light propagation.
It should be noted, however, that in the above form, the principle cannot always be applied. Let P_{1} be the centre of a hemispherical mirror. The length of the path of the ray emerging from P_{1} and reflected by the mirror at its pole p to a point P_{2} on the straight line $p P_{1}$ will be longer than the path $P_{1} Q P_{2}$, consisting of two rectilinear segments $Q P_{2}$ and $P_{1} Q$, corresponding to a reflection by the mirror at a point Q distinct from p. This difficulty can be circumvented by removing from the formulation the specific mention of fixed end points. A better formulation
is as follows: A curve can represent the path of a ray of light if and only if, each point P on Γ, is an interior point of a segment $P_{1} P_{2}$ of Γ which possesses the property that the integral (1.38b) for T taken along the segment $P_{1} P_{2}$ of Γ has a smaller value than that taken along any other curve of light from a point source $P_{1}\left(t_{1}, x_{1}\right.$, $\left.y_{1}, z_{1}\right)$. After a given time i_{0}^{\prime}, such a disturbance will be seen on a surface $F\left(T_{0}\right)$ which, according to Fermat's principle, is such that each point $P_{2}\left(t_{2}, x_{2}, y_{2}, z_{2}\right)$ is joined to P_{1} by an extremal for which the integral (1.38b) takes the value T_{0}, this value being common to all points of $F\left(T_{0}\right)$. The surface $F\left(T_{0}\right)$ is a wave front and for various values of T_{0}, a succession or family of such wave fronts is obtained.

One can show that the family of wave fronts corresponding to the emission from a point source at P_{1} is identical to the family of concentric geodesic spheres centred at P_{1}, a problem of the calculus of variations and determined by the integral (1.38b).

Remark 1. Certain interesting results follow if we consider the problem of propagation of a light ray in an inhomogeneous two-dimensional medium with the velccity of light, proportional to y (see Fig. 1.8). In this case the light rays are the extremals of the functional,
$\operatorname{Qim}_{0}^{\infty} I[y(x)]=\int_{a}^{b} \frac{\left(1+y^{\prime 2}\right)^{1 / 2}}{y} d x$
Here the integral of Euler's equation gives $y\left(1+y^{\prime 2}\right)^{1 / 2}=\bar{C}_{1}$, whose integration leads to

$$
\left(x+C_{2}\right)^{2}+y^{2}=\bar{C}_{1}^{2}
$$

Fig. 1.8 Path of light ray propagation in an inhomogeneous medium.
This is a family of circles centred on the x-axis. The desired extremal is the one which passes through given points. This problem has a unique solution, since only one semicircle centred on the x-axis, passes through any two points lying in the upper half plane.
, Consider the curve q. The opticul path length q is the time $T(q)$, during which the curve is traversed with velocity of light $v(x,-y)=y$. It may be shown that one
end of the part $A D$ of the semicircle q, which lies on the x-axis, has an infinite optical path length. Hence we call the points on the x-axis as infinite points. We shall consider the semicircles with c. ntres on the x-axis to be straight lines, and the optical path lengths of the arcs of such semicircles, to be their lengths, and the angles between the tangents to the semicircles at their intersections to be the angles between such straight lines. Thus we derive a flat geometry in which many of the postulates of ordinary geometry remain valid. For example, only one straight line can be drawn through two points (only one semi-circle centred on the x-axis can be drawn through two points on the semicircle). Two straight lines will be deemed as parallel if they have a common point at infinity (i.e., two semicircles touch each other at a: certain point B lying on the x-axis as shown in Fig. 1.9). Further it is possible to draw througha given point A, not lying on the straight line q, two straight lines q_{1} and q_{2} parallel to q.

Fig. 1.9 Optical path in an inhomogeneous medium.
We have thus obtained an interesting new geometry, which is called the Poincare model of Lobachevskian geometry in the plane.

Remark 2. The foregoing remarks at once lead to the question of the possibility of drawing an extremal through just any two points with distinct abscissae. An answer to this question can sometimes be found from the following theorem due to Bernstein [14] (proof omitted):

Consider the equation

$$
\begin{equation*}
y^{\prime \prime}=F\left(x, y, y^{\prime}\right) \tag{1.38c}
\end{equation*}
$$

If F, F_{y} and $F_{y^{\prime}}$ are continuous at each, end point (x, y) for every finite y^{\prime} and if there exist a constant $k>0$ and functions

$$
\dot{\alpha}=\alpha(x, y) \geq 0, \quad \beta=\beta(x, y) \geq 0
$$

bounded in every finite portion of the plane such that

$$
F_{y}\left(x, y, y^{\prime}\right)>k, \quad\left|F\left(x, y, y^{\prime}\right)\right| \leq \alpha y^{\prime 2}+\beta
$$

then one and only one integral curve $y=\phi(x)$ of (1.38c), passes through any two points (a, A) and (b, B) of the plane, with distinct abscissae $(a \neq b)$.

Consider, for example, the functional

$$
I=\int e^{-2 y^{2}}\left(y^{\prime 2}-1\right) d x
$$

Its Euler equation is

$$
y^{\prime \prime}=2 y\left(1+y^{\prime 2}\right)
$$

Since $F\left(x, y, y^{\prime}\right)=2 y\left(1+y^{\prime 2}\right)$, we have

$$
\begin{aligned}
& F_{y}=2\left(1+y^{\prime 2}\right) \geq 2=k \text { and, further, } \\
& \left|F\left(x, y, y^{\prime}\right)\right| \cong\left|2 y\left(1+y^{\prime 2}\right)\right| \leq 2|y| y^{\prime 2^{3}}+2|y|
\end{aligned}
$$

so that $\alpha=\beta=2|y| \geq 0$. Hence by Bernstein's theorem, there exists an extremal through any two points with distinct abscissae.

On the other hand, it can be shown that it is not possible, to draw an extremal of the futictional

$$
I[y(x)]=\int\left[y^{2}+\sqrt{1+y^{\prime 2}}\right] d x
$$

through just any two points of a plane having distinct abscissae.
5

Functionals Dependent on Higher-Order Derivatives Derive Euler-Poisson egn.

Let us now consider the extremum of a functional of the form

$$
\begin{equation*}
\int_{a}^{b} F\left(x, y(x), y^{\prime}(x), \ldots, y^{(n)}(x)\right) d x \tag{1.39}
\end{equation*}
$$

where we assume F to be differentiable $n+2$ times with respect to all its arguments. The boundary conditions are taken in the form

$$
\begin{align*}
& y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}, \ldots, y^{(n-1)}\left(x_{0}\right)=y_{0}^{(n-1)}, \tag{1.40a}\\
& y\left(x_{1}\right)=y_{1}, y^{\prime}\left(x_{1}\right)=y_{1}^{\prime}, \ldots, y^{(n-1)}\left(x_{1}\right)=y_{1}^{(n-1)} . \tag{1.40b}
\end{align*}
$$

This implies that at the boundary points the values of y together with all their derivatives upto the order $n-1$ (inclusive) are prescribed. We further assume that the extremum of the functional I is attained on a curve $y=y(x)$ which is differentiable $2 n$ times, and any admissible comparison curve $y=\bar{y}(x)$ is also $2 n$ times differentiable. It is clear that both $y=y(x)$ and $y=\bar{y}(x)$ can be included in a one-parameter family of curves

$$
y(x, \alpha)=\jmath(x)+\alpha[\bar{y}(x)-y(x)]
$$

such that $y(x, \alpha)=y(x)$ for $\alpha=0$ and $y(x, \alpha)=\bar{y}(x)$ for $\alpha=1$.

Now on the curves of the above family, the functional (1.39) reduces to a function of α, say, $\Psi(\alpha)$. Since the extremizing curve corresponds to $\alpha=0$, we must have $\Psi^{\prime}(\alpha)=\rho$ at $\alpha=0$. This gives, as in Section 1.2, for an extremum, the relation

$$
\begin{align*}
& {\left[\frac{d}{d \alpha} \int_{a}^{b} F\left(x, y(x, \alpha), y^{\prime}(x, \alpha), \ldots, y^{(n)}(x, \alpha)\right) d \alpha\right]_{\alpha=0}} \\
& =\int_{a}^{b}\left(F_{y} \delta y+F_{y^{\prime}} \delta y^{\prime}+\ldots+F_{y^{(n)}} \delta y^{(n)}\right) d \bar{x}=0 \tag{1.41}
\end{align*}
$$

Integrate by parts the second term on the righthand side once and the third term twice, yielding

$$
\begin{aligned}
& \int_{a}^{b} F_{y^{\prime}} \delta y^{\prime} d x=\left[F_{y^{\prime}} \delta y\right]_{a}^{b}-\int_{a}^{b}\left(\frac{d}{d x} F_{y^{\prime}}\right) \delta y d x \\
& \int_{a}^{b} \dot{F}_{y^{\prime \prime}} \delta y^{\prime \prime} d x=\left[F_{y^{\prime \prime}} \delta y^{\prime}\right]_{a}^{b}-\left[\left(\frac{d}{d x} F_{y^{\prime}}\right) \delta y\right]_{a}^{b}+\int_{a}^{b}\left(\frac{d^{2}}{d x^{2}} F_{y^{\prime \prime}}\right) \delta y d x
\end{aligned}
$$

and so on. The last serm on the right-hand side of (1.41) can be written by successive integration by parts as

$$
\begin{aligned}
\int_{a}^{b} F_{y^{(n)}} \delta y^{(n)} d x= & {\left[F_{y^{(n)}} \delta y^{(n-1)}\right]_{a}^{b}-\left[\left(\frac{d}{d x} F_{y^{(n)}}\right) \delta y^{(n-2)}\right]_{a}^{b} } \\
& +\ldots+(-1)^{n} \int_{a}^{b}\left(\frac{d^{n}}{d x^{n}} F_{y^{(n)}}\right) \delta y d x
\end{aligned}
$$

By virtue of the boundary conditions (1.40a) and (1.40b), the integrated parts in all the above expressjons on the right side vanish. Thus from (1.41), we find that on the extremizing curve

$$
\int_{a}^{b}\left(F_{y}-\frac{d}{d x} F_{y^{\prime}}+\frac{d^{2}}{d x^{2}} F_{y^{\prime \prime}}-\ldots+(-1)^{n} \frac{d^{n}}{d x^{n}} F_{y^{(n)}}\right) \delta y d x=0
$$

for an arbitrary choice of δy. Due to conditions of continuity imposed on F, the first factor in the foregoing integral is a continuous function of x in $[a, b]$. Thus invoking the fundamental lemma of Section 1.2, the runction $y=y(x)$, which extremizes I satisfies

$$
\begin{equation*}
F_{y,}-\frac{d}{d x} F_{y^{\prime}}+\frac{d^{2}}{d x^{2}} F_{y^{\prime \prime}}-\ldots+(-1)^{n} \frac{d^{n}}{d x^{n}} F_{y^{(n)}}=0 \tag{1.42}
\end{equation*}
$$

which is known as the Euler-Pcisson equation.]
Clearly this is a differental equation of the order $2 n$ and hence its solution involves $2 n$ arbitrary constants. These are found by using the $2 n$ boundary conditions (1.40a) and (1.40b).

Example 9. Determine the extremal of the functional 6^{9}

$$
I[y(x)]=\int_{-l}^{l}\left(\frac{1}{2} \mu y^{\prime \prime 2}+\rho y\right) d x
$$

subject to

$$
y(-l)=0, \quad y^{\prime}(-l)=0, \quad y(l)=0, \quad y^{\prime}(l)=0 .
$$

Solution. This variational problem arises in finding the axis of a flexibly bent cylindrical beam clamped at the ends. If the beam is homogeneous, ρ and μ are constants. Then Euler-Poisson's equation (1.42) becomes : $\rho+\frac{d^{2}}{d x^{2}}\left(\mu y^{\prime \prime}\right)=0$
whose solution satisfying the prescribed boundary conditions is

$$
y=-\frac{\rho}{24 \mu}\left(x^{4}-2 l^{2} x^{2}+l^{4}\right)
$$

1.5 Functional Dependent on Functions of Several Independent Variables

In the variational problems, considered so far, Euler's equations for determining extremals, are ordinary differential equations. We now extend this to the problem of determining the extrema of functional involving multiple integrals leading to one or more partial differential equations. Consider, for example, the problem of finding an extremum of the functional

$$
\begin{equation*}
J[u(x, y)]=\iint_{G} F\left(x, y, u, u_{x}, u_{y}\right) d x d y \tag{1.43}
\end{equation*}
$$

over a region of integration G by determining u which is continuous and has continuous derivatives upto the second order, and takes on prescribed values on the boundary of G. We further assume that F is thrice differentiable. surface is taken as

$$
u(x, y, \alpha)=u(x, y)+\alpha \eta(x, y)
$$

where $\eta(x, y)=0$ on the boundary of G. Then the necessary condition for an extremum is the vanishing of the first variation

$$
\delta J=\left(\frac{\partial}{\partial \alpha} J[u+\alpha \eta]\right)_{\alpha=0}
$$

This implies from (1.43)

$$
\begin{equation*}
\iint_{G}\left(F_{u} \eta+F_{u_{x}} \eta_{\underline{x}_{x}}+F_{u_{y}} \eta_{y}\right) d x d y=0 \tag{1.44}
\end{equation*}
$$

which may be again transformed by integration by parts. We assume that the boundary Γ of G admits of a tangent, which turns piecewise continuously. Then using the familiar Green's theorem, we have

$$
\begin{aligned}
\iint_{G}\left(\eta_{x} F_{u_{x}}+\eta_{y} F_{u_{y}}\right) d x d y= & \int_{\Gamma} \eta\left(F_{u_{x}} d y-F_{u_{y}} d x\right) \\
& -\iint_{G} \eta\left(\frac{\partial}{\partial x} F_{u_{x}}+\frac{\partial}{\partial y} F_{u_{y}}\right) d x d y
\end{aligned}
$$

Thus from (1.44),

$$
\iint_{G}\left[F_{u}-\frac{\partial}{\partial x} F_{u_{x}}-\frac{\partial}{\partial y} F_{u_{y}}\right] \eta d x d y+\int_{\dot{\Gamma}} \eta\left(F_{u_{x}} d y-F_{u_{y}} d x\right)=0 .
$$

Since $\eta=0$ on Γ and the above relation holds for any arbitrary continuously differentiable function η, it follows from above that by using the generalization of the fundamental lemma of Section 1.2 that

$$
\begin{equation*}
F_{u}-\frac{\partial}{\partial x} F_{u_{x}}-\frac{\partial}{\partial y} F_{u_{y}}=0 \tag{1.45}
\end{equation*}
$$

The extremizing function $u(x, y)$ is determined from the solution of the secondorder partial differential equation (1.45) which is known as Euler-Ostrogradsky equation. If the integrand of a functional J contains derivatives of order higher than two, then by a straightforward extension of the above analysis, we may derive a modified Euler-Ostrogradsky equation for determining extremals. For example, in the case of the functional

$$
J[u(x, y)]=\iint_{G} F\left(x, y, u, u_{x}, u_{y}, u_{x x}, u_{x y}, u_{y y}\right) d x d y
$$

we get the equation for extremals as

$$
\begin{aligned}
& F_{u}-\frac{\partial}{\partial x} F_{u_{x}}-\frac{\partial}{\partial y} F_{u_{y}}+\frac{\partial^{2}}{\partial x^{2}} F_{u_{x x}}+\frac{\partial^{2}}{\partial x \partial y} F_{u_{x y}}+\frac{\partial^{2}}{\partial y^{2}} F_{u_{y y}}=0 \\
& \text { Doric the Euler: os egg hence }
\end{aligned}
$$

Q. Example 10. [Find the Euler-Ostrogradsky equation for

$$
I[u(x, y)]=\iint_{D}\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}\right] d x d y
$$

where the values of u are prescribed on the boundary Γ of the domain D.
Solution. It clearly follows from (1.45) that the equation for extremals is

$$
\begin{equation*}
\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \tag{1.46}
\end{equation*}
$$

$\left.\cdot \not p\left(f^{\prime} x \cdot x^{\prime} x\right) \Phi{ }^{\prime \prime}\right]=\left[(t) x^{\prime}(t) x\right] I$ For example, the area bounded by a coosed curve given by $\int_{t_{1}}(x \dot{y}-y \dot{x}) d t$ is a
functional which can be put in the form

Thus the integrand remains unchanged with a change in the parametric representation. $2 p\left({ }^{2}{ }^{\prime 2} x \cdot x \cdot x\right) \phi \int_{1_{1}}^{0_{1}}=\eta p\left(x^{\prime} \cdot x \cdot x \cdot x\right) \phi_{1_{2}}^{0_{1}} \int^{0}$

But since ϕ is a homogeneous function of first degree in \dot{x} and \dot{y}, แวपLL
> where ϕ satisfies the homogeneity condition (1.49). Let us now consider a new $I[x(t), y(t)]=\int_{t_{0}}^{t_{1}} \phi(x(t), y(t), \dot{x}(t), \dot{y}(t)) d t$,

> Take, for example,

$$
F(x, y, k \dot{x}, k \dot{y})=k F(x, y, \dot{x}, \dot{y}), \quad k>0
$$

 ways), it is both necessary and sufficient that the integrand in (1.48) does not line, and not on the parametrization (which can be accomplished in a number of respect to t. In order that the values of the functional (1.48) depend only on the where the integration is along the line (1.47) and a dot denotes derivative with

$$
J[x(t), y(t)]=\int_{t_{0}}^{T} F(t, x, y, \dot{x}, \dot{y}) d t \text {. }
$$

Consider the functional

$$
x=\phi(t), \quad y=\Psi(t) \text { for } t_{0} \leq t \leq t_{1}
$$

make use of a parametric representation of a line as follows: In many variational problems, it is more convenient and sometimes necessary 10
1.6 Variational Problems in Parametric Form
水

respect to t ．In order that the values of the functional a dot denotes derivative with hine，and not on the parametrization（which can be accomplished in only on the （1．48）does no arn t explicitly and that it is homogeneous of the first degree in \dot{x} and \dot{y} ．

$$
F(x, y, k \dot{x}, k \dot{y})=k F(x, y, \dot{x}, \dot{y}), \quad k>0 .
$$

$(8 t \cdot 1)$
（ $\left.L \nabla^{\prime} I\right)$

$[x(t), y(t)]=\quad F(t, x, y, \dot{x}, \dot{y}) d t$,

the functional
（1．47） ，$\left.t_{0} \quad x, y, x, y\right) d t$ ，
make use of a param problems，it is more convenient and sometimes necessary to
．
ariational Problems in Param
（1．49）．Let us now consider a new where ϕ satisfies the homogeneity condition $(1,4$
 ake，for example，
vector of the particle with respect to a fixed origin is denoted by \mathbf{r}, then by Newton's mes mosition phenomena. Let us formulate the principle for a dynamical system of particles and Using this principle one can deduce the basic equations governing many physical (1805-1865), an Irish mathematician, also known for his invention of quaternions) One the principle of least action due to Hamilton (William Rowan Hamiïton tal and imprinciples of mechanics and mathematica

1.7
 Some Applications to Problems of Mechanics

give $1 / r=2 a^{2}$, which shows that the extremals are circles

Using Weirstrass form of Euler equations, we find that
we first notice that the integrand $\Phi(x, y, \dot{x}, \dot{y})$ is homogeneous of degree one.

$$
I[x(t), y(t)]=\int_{t_{0}}^{t_{1}}\left[\left(\dot{x}^{2}+\dot{y}^{2}\right)^{1 / 2}+a^{2}(x \dot{y}-y \dot{x})\right] d t
$$

For example, in finding the extremals of

where r is the radius of curvature of the extremal and Φ_{1} is the common value
of the ratios $\frac{1}{r}=\frac{\Phi_{x \dot{y}}-\Phi_{y \dot{x}}}{\Phi_{1}\left(\dot{x}^{2}+\dot{y}^{2}\right)^{3 / 2}}$

$$
\begin{aligned}
& \text { which shows that the arc length of the curve is taken as the parameter. } \\
& \text { The Weirstrassian form of Euler equations }(1.50) \text { is }
\end{aligned}
$$ one of the equations (1.50) along with the equation $\dot{x}^{2}+\dot{y}^{2}=1$ (1.50), any one equation is a consequence of the other and to find the extremals, of a solution of a system of differential equations. Thus we conclude that in being independent, would conflict with the theorem of existence and uniqueness parametric representation of the same curve, which, in the case of Euler's equations a certain solution $x=x(t), y=y(t)$, and any other pairs of functions with a different However, these equations are not independent, because these must be satisfied by

[^0]for I, one has to solve Euler's equations
where Φ is a homogeneous function of degree one in \dot{x} and \dot{y}. Thus to find extremals

28 ('alculas of Variatoms with Applacathons

We assume that the bar is slightly extensible. The potential energy of an elastic

$$
x p\left(\frac{4 \varrho}{n \rho}\right) d \int_{\tau}^{0} \frac{\tau}{\tau}=L
$$ the kinetic energy of the bar of length l is function of x (measured along the bar in the undisturbed position) and time t. Thu a rectilinear bar. A displacement from the equilibrium position $u(x, t)$ will be a Let us now apply the above principle to derive the equation of vibration of

In fact, the principle applies equally well to a general dynamical system
consisting of a system of particles and rigid bodies. and the total work done by the forces is $\sum \mathbf{f}_{k} \cdot \delta \boldsymbol{r}_{k}$.

 Thus for N particles, the kinetic energy is to a system of N particles by summation and to a continuous system by integration. by the force \mathbf{f} in a small displacement or. The foregoing study can te easily exuended energy function does not exist, but (1.56) still holds and 8 . oir is the work done which these three plancs cut the ellipsoid, are closed geodesion, linestor exampre, an ellipsoid thas three symetry plane, and the ellipses, alens show that on any smooth closed surface, there are at least three dored gevdenic
Wy topological methods in variational probjems (I yusternik (2]), we can) is not acted hy external forces Smmarly,
along a helix under the same circumstance we may note that a point on a pherical surface moter along a aseat corcle if
 A line q is called the peodesic on a surfacest at cach mimo of 9 , the moncopal without extemal forces actung on it, follows a a dodere he
 Hom Hamiten': pmesple
suffictently shan thme mes as

Variational Problems with Fixed Boundaries 29

$$
\left.' s p(s) f(s) \phi \int \tau-s p_{i} \mid(s) \phi\right] \int+1 p s p(t) \phi(s) \phi(I ' s) Y \iint=[\phi]
$$

 But more generad classes of functionals are often encountered in variament function formed by integrating a certain differential a Differential-Difference Equation
Thus far we have been concerned with variational problems involving functon or
 -

$$
\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}=\nabla^{2} u-k u, \quad c^{2}=T / \rho
$$

 positive constantinfo the right-hand side of the above equation. The new equation quilibrium position. This leads to adding a term of the form $-k u$ (k being is acted on by a uniformly distributed linear restoring force, directed towards the There is an important generalization of the above equation, whe the string
where T and ρ denote the tension and the line density of the material of the string

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{T}{\rho} \cdot \frac{\partial^{2} u}{\partial x^{2}}
$$

displacement $u(x, t)$ of a highly flexible and almost inextensible homogeneous
string from its equilibrium position is displacement $u(x, t)$ of a highly flexible and which is the governing equation for displacement $u(x, t)$.

$$
0=\left(\frac{\tau^{x \rho}}{n_{z} \rho} y\right) \frac{\tau^{x} \varphi}{\tau \rho}+\left(\frac{p \rho}{n \rho} d\right) \frac{\mu \rho}{\rho}
$$

 will be an extremum for fixed terminal

Hamilton's principle, the integral
 According to our assumption of slight extensibility, the deviations of the bar from
is variable, is
k being a constant. Thus the potential energy of the entire bar, whose axis-curvature
0ε

$\int_{x_{0}} \eta d x=\zeta\left(x_{1}\right)-\zeta\left(x_{0}\right)=0$

$$
\int_{x_{0}}\left(A^{\prime} \zeta+B \zeta^{\prime}\right) d x=\int_{x_{0}}^{x_{1}} \zeta^{\prime}(B-A) d x=0
$$

We select an arbitrary function $\zeta^{\prime}=\eta$ which is cont
 әŋ!p К[snonu!̣uoo Kux IoJ splou

$$
\int_{a}\left[F_{y} \zeta+F_{y^{\prime}} \zeta^{\prime}\right] d x=0
$$

$\int_{a}^{b} \eta d x=0, \int_{a}^{b} x \eta d x=0, \ldots, \int_{a}^{b} x^{n} \eta d x=0$
ϕ is a polynomial of nth degree.
To prove du Bois-Reymond's theorem
function satisfying $\int^{b} \phi \eta d x=0$ for all continuous
can be generalized in the following manner: $\int_{a}(\phi-c) d x=0$ and this proves the lemma. This result

then $\phi(x)$ is a constant
${ }^{\prime} 0=x p(x) u \int_{q}$
actury continuous function $\eta(x)$ satisfying the condition
$0=x p(x) u(x) \phi \int^{p}$
in $[a, b]$ and if We first prove the following
(see Courant and Hilbed that $F_{y^{\prime} y^{\prime}} \neq 0$. This is the theorem of du Bois Reymond derivative also provided first order continuous derivan (satisfying the boundary conditions) admitting $y(x)$ is the extremizing fustion in Section 1.2 that if in this variational problem We next prove our assertion $I\left[y^{*}(x)\right] \geq I[y(x)]$. This proves the result.
$I[p(x)] \geq I[p(x)]$ ande comparison function with continuous second derivatives $p(x)$ is an admissible comparions
generated by Schrödinger equation. is determined by a one-parameter unitary flow in a Hilbert space $L_{2}\left(R^{f} \rightarrow C\right)$
 where h is the Planck constant divided by $2 \pi, \Psi \in L_{2}\left(R^{f} \rightarrow C\right)$. Here L_{2} is the

$$
\hbar\left(\Lambda+\Delta \cdot \Delta \frac{u z}{z^{\eta}}-\right)=\frac{\varphi e}{\hbar \rho} \cdot \varphi ?
$$

In quantum mechanics, the dynamical law is given by Schrödinger equation
for the functional J.

$$
=\frac{x \rho}{T \rho}-\left(\frac{x \rho}{T \rho}\right) \frac{p p}{p}
$$

$\overrightarrow{\left.\rightarrow R^{f}\right) \text { is the flow and } \dot{x} \text { is the velocity } d x / d t \text {. In this case, Newton's dynamical }}$ law follows from the Euler-Lagrange equation

$J=\int L(x(t), \dot{x}(t)) d t$

freedom, the possible motion is given by a flow in R^{f} which makes the functional principle of least action. In particular, for a dynamical system with f degrees of laws of motion are represented by a variational principle given by Hamilton's

1.10 Stochastic Calculus of Variations
using the generalization of the above lemma. which can be easily extended to an integrand of the form $F\left(x, y, y^{\prime} \ldots, y^{(n)}\right.$ by also continuously differentiable. This establishes Du Bois-Reymence $y^{\prime}(=\phi)$ is
 virtue of (1.60), $F_{y^{\prime}}$ is a continuous function of x and y^{\prime} is $\phi\left(x, y, F_{y^{\prime}}\right)$. Further by be expressed as a continuously differens derivative. Because, if $F_{y^{\prime} y^{\prime}} \neq 0, y^{\prime}$ may y^{\prime} is also continuous and has a , it follows that the piecewise continuous function

 $0=-x-y \frac{x p}{p}$
y^{\prime} also is differentiable. Hence Euler's equation
$x_{y^{\prime}}$ also is differes (1.60) that
Now since $\int_{y}^{x} F_{x}$ is differentiable with

(0n'I)
$C^{1}(I \rightarrow H)$
functional $d J$ on $C^{1}(I \rightarrow H)$ is called the variation of the functional . The linear
 $\left(z^{\prime} x\right) y+\left(z^{\prime} x\right) \Gamma p=(x) \Gamma-(z+x) \Gamma$
 .

 [differentiable stochastic processes of the second order adapted to P and F. The We now denote, by $C^{1}(I \rightarrow H)$, the totality of mean forward and backwa Further, $D x$ and $D_{*} x$ are said to be mean forward and bact to a σ-algebra $B \subset A$, $E[\cdot \mid B]$ say that $x(t)$ is mean backward differentiable. In the above definitions, exists, we say that $x(t)$ is mean backward diffe

$$
D_{*} x(t)=\lim _{h \rightarrow 0+} E\left[\left.\frac{x(t)-x(t-h)}{h} \right\rvert\,\right.
$$

then the stochastic process is said to be mean forward differentiable. Further, if exists as a limit in H for each t in I and $t \rightarrow$
II
 from I into H. Now let $P=\left\{p_{t}\right\}_{\text {IE }}$ and $F=\{f\rangle$ in R^{j} if $t \rightarrow x(t)$ is continuous $\left.R^{f}\right)$ is called a stochastic process of second a Hilbert space $H=L_{2}((\Omega, P r) \rightarrow$ mapping x from subst of Ω and $P r$ is a probability measure defined on A. A $(\Omega, A, P r)$ be a probability-spate,-where Ω is a certain non-empty set, A is a stochastic processes
We now give, fol which might be regarded as a generalization of the ordinary calculus of variations Recently, Yasue [5] developed a•theory of stochastic calculus of variations,
 principle analogous to that of Hamilton in. In particular there is no least action It has been opined that the dynamical law in quantum mechanics is radically It has been opined thations with Applications

$$
\text { completion of } C^{1} \text { in the norm }
$$

$$
\begin{aligned}
& \|x\|=\sup _{t \in I}\left(\|x(t)\|_{H}+\|D x(t)\|_{H}+\left\|D_{*} x(t)\right\|_{H}\right) \\
& \text { is also delnoted by } C^{1}(I \rightarrow H) \text {, where }\|\cdot\|_{H} \text { is the no }
\end{aligned}
$$

$$
\begin{aligned}
& \text { condition, for an } L \text {-adapted process to oe an } \\
& \text { before with fixed end points } x(a)=x_{a} \text { and } x(b)=x_{b} \text { is that it satisfies }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1ost surely (a.s.), where } x_{a} \text { and } x_{b} \text { belong to } H \text {. } \\
& \text { To prove this theorem we note that since } z(a)=z(b)=0 \text {, }
\end{aligned}
$$

$=\frac{1}{2}\left(\frac{1}{2} m|D x|^{2}+\frac{1}{2} m\left|D_{*} x\right|^{2}\right)-V(x)$

$L\left(x, D x, D_{*} x\right)=L_{1}(D x, D, x)-V(x)$

 $z(t)>0($ a.s. $)$ for $u-d<t<u+d$ and $z(t)=1$ (a.s.) for $u \frac{d}{2}<t<u+\frac{d}{2}$. Then differentiable process : such that $:(t)=0$ (a.s.) for $a \leq t \leq u-d, u+d a t \leq b$, by continuily $y(t)>C, d>0$. But since $z \in C^{\prime}(I \rightarrow H)$ is arbitrary, we may shoose a mean syuare
for any $z \in\left(^{\prime}(l \rightarrow H)\right.$ iff $y=0(a s)$. Assume $y(u)>0(a . s)$ for $u \in(a, b)$. Then
by continuity $y(t)>(>0($ a.s. $)$ in a neighbourhood of $u: a<u-d<t<u+d$

$$
\begin{gathered}
\stackrel{Q}{2} \mid \approx \\
\frac{2}{2} \\
\frac{2}{2} \\
\frac{2}{2} \\
\frac{2}{2} \\
0
\end{gathered}
$$ An L-adapted process $x \in C^{\prime}(I \rightarrow H)$ is called a stathonary point or an extremal

\square
 pardepe- 7 streneues jo snpmape?
suon pardepe- 7 วq of pies psomead onseyoors V B 2
$\frac{2}{2}=$
$\frac{3}{3}=$
$\frac{3}{3}=$
1 pue (H)

$$
\begin{aligned}
& \begin{array}{c}
\underset{\vdots}{\vdots} \\
\vdots \\
\vdots \\
\vdots \\
\vdots
\end{array} \\
& \begin{array}{l}
\qquad d J_{a b}=E\left[\int_{a}^{b}\left[\frac{\partial L}{\sqrt{\partial(t)}}-D \cdot\left(\frac{\partial L}{\partial D x(t)}\right)-D\left(\frac{\partial L}{\partial D \cdot x(t)}\right)\right] z(t) d t\right. \\
\text { It suffices } 10 \text { show that for a stochastic process of second rider }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { of the functional } J_{a b} \text { if it destroys the differental and } \\
\text { We now state the following fundamental theorem. A necessary and sufficient } \\
\text { condition, for an } L \text {-adapted process to be an extremal of the functional } J_{a b} \text { given }
\end{array} \\
& \text { of the functional } J_{a b} \text { if it destroys the differential at } \text {, necessary and sufficient }
\end{aligned}
$$

 to choose the domain of admissible functions as a 'compact set' faral, possible may not have solutions. This stems from the fact that it is not, ingully formulated, Weirstrass. However variational problems, even if they are mearinental theorem of function, the existence of a solution is guaranteed by the fundo or minima of a
 Existence of an Extremum
We conclude this chapter by
Existence of an Extremum
the solution of the above PDE, and to subsequent function $F\left(x, y, y^{\prime}\right)$, reduces 10

> Differentiating this with respect to y^{\prime}, we get

$$
F_{y^{\prime} y^{\prime} x}+F_{y^{\prime} y^{\prime} y} y^{\prime}+F_{y^{\prime} y^{\prime} y^{\prime}} \cdot f+F_{y^{\prime} y^{\prime}} \cdot f_{y^{\prime}}
$$

Setting $u=F_{y^{\prime} y^{\prime}}$, we obtain the partial differen $F_{y}-F_{y^{\prime} x}-F_{y^{\prime} y} y^{\prime}-F_{y^{\prime} y^{\prime}} \cdot f\left(x, y, y^{\prime}\right) \equiv 0$.
coincides with the above second-order differential equation. This means that there
must be an identity with respect to x, y, y^{\prime} $F_{y}-F_{y^{\prime} x}-F_{y^{\prime} y} y^{\prime}-F_{y^{\prime} y^{\prime}} y^{\prime \prime}=0$
coincides with the above second-order differ
This can be established by seeking the functional for which the Euler's equation $x p\left(x^{\prime} x^{\prime} x\right)_{d} \int=[(x) d]$
It can be shown that any equation of the above form is a Euler equation for some
functional Variational Principle for the Equation $y^{\prime \prime}(x)=f\left(x, y, y^{\prime}\right)$
1.11 Supplementary Remarks
> law to a stochastic process.
> almost surely, which might be regarded as the generalization of Newton's dynamicial $\frac{m}{2}\left[D D_{*} x+D_{*} D_{x}\right]=-\nabla V(x)$
energy. Here the Euler equation (1.61) becomes
where m is the particle mass and L_{1} and V comespond to the kinctic and potential
$\stackrel{\omega}{0}$
(x) $=\int F\left(x, y, y^{\prime}\right) d x$.

$$
f=[(x) x]!
$$

$\left[(x)^{u} x\right] I \stackrel{\infty \text { tut }}{\text { แ! }}>[x] I$

with the boundary conditous
The sequence $\left\{Y_{n}(x)\right\}$ being a minimizing sequence, we conclude that the quantity
$I[Y]$ is the least value and the existence of a minimum is therefore established. Thus we have side exceeds the left hand side. Both possibilities are demonstrated in ligs. 1.10(a)
and 1.10 (b). hand side equals the right hand side. However, there are cases when the right hand The last result may appear somewhat strange because one may think that the leti $x p(x)_{\tau}, ., x(x)_{d} \int_{q}^{p} \underset{\omega \leftarrow!!}{\omega}>x p(x)_{\tau}, X(x)_{d} \int_{q}^{p}$
But

$$
\begin{aligned}
& \int_{a}^{b} Y^{2} d x=\lim _{n \rightarrow \infty} \int_{a}^{b} Y_{n}^{2}(x) d x=1 \\
& \int_{a}^{b} Q(x) Y^{2}(x) d x=\lim _{n \rightarrow \infty} \int_{a}^{b} Q(x) Y^{\prime}
\end{aligned}
$$ minimum value for $y=Y(x)$. In fact, we have uniformly convergent) to a limit function $Y(x)$, then the functional attains a If a minimizing sequence $\left\{Y_{n}(x)\right\}$ (or its subsequence) is convergent (say, and (1.64) such that $\left.\lim _{n \rightarrow \infty} I y_{n}(x)\right]$ is equal to the greatest lower hound. Such a is not attained, we can construct a sequence of functions $Y_{n}(1)$ satisfying (1.63) Thus the above functional is bounded below. Now, even if lle least value of $|y|$

$I[y] \geq \int Q(x) y^{2} d x \geq \min _{a \leq 1 \leq b} O(x) \int y^{2} d x=\min _{a \leq 1 \leq 1}(x)$

We suppose that $P(1)$ and $Q(x)$ are contimuous in \mid a. $1, \mid$ with $l^{\prime}(1) \cdot()$. It the
follows from (1.62) that ()$\left.^{\prime} 1\right) \quad I=x \psi_{i} \int_{i}^{s}$ To fix ideas we also assume an integral constraint

$$
y(a)=y(b)=0
$$

$\llbracket y(x)|=| P(1) y^{\prime 2}+\left(\Omega(1) v^{2} \mid d x\right.$

For definteness, let us consider the functional

Variational Problems with tival boundatios
prove that every minimizing sequence $\left\{Y_{n}\right\}$ mentioned above is not onso possible subsequences of this sequence do not converge uniformly. But it, therefore, the between -1 and 1 with increasing frequency $\sin n x, n=1,2,3, \ldots$ oscillate
 $\sin 3 x, \ldots$ is bounded, but noncompact as equence of functions $\sin x, \sin 2 x$ spaces presents difficulties. For example subsets are not necessarily compact, and thal spaces is that their bounded An important feature of infinite-dimensiot. finite-dimensional Euclidean spece is compact. But every' unbounded set of finite-dimensional Euclidean as: every bounded set of points belonging ase
 to M has at least one compact in (R), if every infinite sequence of pointric space $(R))$ is said to be cements) of a normed space R (or a more many other problems. concept of compactness, which plays a vital role in these sence $\left\{Y_{n}(x)\right\}$ involve the Conditions for the existence of a converg
OI'I ‘s! $01 \cdot 1$ 8!

$$
0
$$

$$
\begin{aligned}
& \text { O } \\
& \text { - }
\end{aligned}
$$

> with the boundary conditions i
(1)x $\quad 0=(0) x=(0) x$
suon!puos Krppunoq

$$
x(0)=y(0)=0, \quad x(1)=y(1)=1
$$

It can be shown that the above boundary valu
no differentiable
A simple geometrical example of non systern. contion curvatur of the x-axis are to be joined by the shortost con be given a this problem has no solution. perpendicular to the x-axis at the end-points. Cle of than that of the straight line, joining the length of such a line is always greate th a.s closely as desired. Hence there exists a but it may approximate no minimum for admissible curves.
We may now sum up the foregoing considerations about a greatest lower bound, but in the absence of an existence proof may characterization of such an exte of an following example of Oscar Perron. Let us assume to a nonsense, as in the positive integer N. Thus $N \geq n$ for any positive integer that there exists a largest $N^{2}>N$. But $N \geq N^{2}$ by our hypothesis leads to $N^{2}=N$. This gives $N=1$, then clearly
there is nothing wrong in the proof the nom N. If of the existence of a largest positive nonsense arises from our original assumph if necessary or sufficient conditions for the extremum of a functionalar nonsense , Ahe proof, the nonsense arises from glves $N=1$. Although exiremum in a variational problem. considerations about is not well-posed so that
$y_{t}=\left(1+x_{1}^{2}\right)^{1 / 2}$
necessary condition for the existence of an extremum-Lagrange equation as the variational problem leads to the following Catheodory show
be ill-posed, as the following the corresponding variational problem maj also posed differential system matical modellin, of a real life problem may lead w ill croors. Thus a poor mathed. The mere process of measuring them involves mall assumed to be rigidly fixed inable natural phenomena. Data in nature cannot be equations is to describe obe mathematical formulation in the form of differential incisive, is necessary, posed. The third requirement above, which pational problem is also not well poestom is not well-posed, the corresponding variationa data. Thus, il a differentiat and depends contimuously on the initialforoundar the solution exists, is umis well posedness in the senee of Hadamard implies that Alferential equations? This well poincas of boundary value problems, involving well posed (see ref $|3 b|$) for a costain when are the initial or beundary conditions We pose the following suest variatuonal problem, may also anise fon monexbstonce of solumons , at probem However, an entrely different rea:or
 wwes. Its whem w the lack of con, if may appear that the mon exsetence of solutere from the distobutum: Hewuer tonverpence in $1: 4$ Such weak limits, are called peneralized ares define weak cement of 18^{*} : how followng the ndeas of 1 . Schwartz cone can

1. Test for an extremum the functional
$\qquad I y(x)]=\int_{0}^{1}\left(x y+y^{2}-2 y^{2} y^{\prime}\right) d x, y(0)=1, y(1)=2$.
Ans. An extremum is not achieved on the class of continuous functions.
2. Find the extremals of the functional
PROBLEMS
physical phenomenon. The existence of solutions in a rr thematical model must
realistically reflect our physical experience.
functions. This has a bearing on a basic difficulty arising in the modelling of a
without first checking whether such an extremum is attained in the class of admissible
Variational Problems with Fixed Boundaries 41

$$
\begin{aligned}
& \quad I[y(x)]=\int_{x_{0}}^{x_{1}} \frac{\left(1+y^{2}\right)}{y^{\prime 2}} d x . \\
& \text { Ans. } y=\sinh \left(C_{1} x+C_{2}\right) \\
& \text { 3. Find the extremals of the functional } \\
& \quad I y(x)]=\int_{x_{0}}^{x_{1}}\left(2 x y+y^{\prime \prime \prime 2}\right) d x . \\
& \text { Ans. } y=\frac{x^{7}}{7!}+C_{1} x^{5}+C_{2} x^{4}+C_{3} x^{3}+C_{4} x^{2}+C_{5} x+C_{6} . \\
& \text { 4. Find the Euler-Ostrogradsky equation for the functional } \\
& I[u(x, y, z)]=\iiint_{D}\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}+\left(\frac{\partial u}{\partial z}\right)^{2}+2 u f\right] d x d y d z . \\
& \text { Ans. } \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=f(x, y, z) .
\end{aligned}
$$

[^0]: $0={ }^{\kappa} \Phi \frac{p p}{p}-{ }^{\kappa} \Phi \quad{ }^{\prime} 0={ }^{x} \Phi \frac{p p}{p}-{ }^{x} \Phi$

