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CHAPTER 1

VARIATIONAL PROBLEMS WITH
FIXED BOUNDARIES

‘ 11 - The Concept of Variation and Tt Properties

poir}t_ed out in the introducﬁbn, a variable quantity I[y(x)]is a _functional

By the increment orv

ariation &y of the argument y(x) of a functional, /, we
mean the difference (= y(

X) = y1(x)) between two functions belonging to a certain
class. A functiona] 1[y(x)] is said to be continuous if a small change in y(x) results
in a small change in 1y(x)]. This definition is, however, somewhat imprecise since
we have not specified what we exactly mean by the phrase ‘a small change in

y(x)’. In other words, under what conditions should we consider the curves y =
¥(®) and y = y,(x) close?
On

¢
value of their difference. given by | y(x) - Y1(¥) | is small for all x for which y(x)

b
Iy(x)] = f F(x, y(x), y'(x)) dx, (1.1)

which occurs in many applications, is seldom continuous due to the presence of

the argument y'(x). T ecessitates the extension of the notion of closeness of
the curves y = y(x) and Y = y1(x) such that both Iy(x) - y;(x) | and y/(x) ~ y/ ()|
are small for all values of x for which these functions are prescribed Aye hen say
that these two curves are close in the sense of first-order proximit)). In general,
the curves y = y(x) and Y = yi(x) are said to be close in the sense of nth order
proximity if | y(x) — Y@ Ty(x) - W)l ly™(x) - y](")(x)l are small for
values of x for which these functions are defined.

Figure I.1 shows two curves which are close in the sense of zero-order
proximity but not i~ the sense of first-order proximity. Figure 1.2 shows two
curves which are close in the senge of first-order proximity. It is clear from the
above definitions that if two curves are close in the sense of nth order proximity,
then they are certainly, ‘close in the sense of any lower order (say, (n-1)th)
proximity. o .

We are now in a position to refine the concept of the continuity of a functiona,
The functional /[y(x)] is said to be continuous at y = yp(x), in the sense of
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Variational Problems with Fixed Boundaries §

Y Y“

0 o | X ) : . X -
Fig. 1.1° Curves close in the sense of Fig. 1.2 Curves close in the sense of
zero-order proximity.

first-order proximity.

order proximity, if given any positive number &, there exists a & > 0 such that

HIy()] - Iyy(0)] 1 < & for | yx) = yo) 1 < &
1Y) =y 1< 8,...,1y™0x) -y x)1 < &

Example 1. Show that the functional

1 .
I[y(x)] = J X1+ y2 ()72 dx
0
defined on the set of functions y(x) € C[0, 1], (where C[0, 1] is the set of all

continuous functions on the closed interval 0 < x < 1) is continuous on the function
Yo(x) = x* in the sense of zero-order proximity.

Solution.  Put y(x) = x* + an(x), where n(x) e C[0, 1] and o is arbitrarily
small. Then,

1

Iy(0)] = Ix? + on(x)] = j L+ (2 + an(e) V2 gy,
0

Passing to the limit o — 0, we find that,

lim I[y(x)] = J X+ xH gy = e

a0 T 0 ~
and this establishes the continuity of the functional on Yolx) = X2
It is, however, possible to define the notion of distance Py,

y2) between two
curves y = y;(x) and y = y,(x) (with xg < x < x)) as

POYEY) = max |y(x) =y (x)l (1.2)
(xg Sx<xy) ’

Clearly, with this metric, we can introduce the concept of zero-order proximity.
This notion can be extended to the case of nth order proximity of two curves

y = yi(x) and y = y,(x) (admilting continuous derivatives upto order n inclusive)




~=given by

(1.3)

[¥(x)] defined in the

. This functional is said to be linear,

x) e M. '

e Pl ) early, /in (1 4) is a linear functional
; g own that g unctiona] Iy(x)] is linear if (a) it is continuous
and, (b) for any yi(x) € M ang ¥2(x) € M, satisfies the conditi

DT+ M2) = 1y 43,00y

~ Let us now define the variation of functional Ily(x)]. The increment Al is

My&) + Syt - 4 3769)]

which may be written in the form

Al =

) mum

This sort of division of the mcrement Af
18 analogous to the differential, and the infinitesimal, jp the case of a function of
a single variable given by

YY) = fix + Ax) - fix)

= A(x) Ax + B(x, Ax) Ax.
Here, A(x) Ax, known as the differentia] df, is the principal part of the incre
and is linear in Ax, By the same tollen,

ment
the part Lly(x), &y] is calleg the variatiop
of the functional and ig denoted by &7,
An alternative definitio

Consider the functiona] Ify
the parameter ¢, -

(1.6)

Now using (1.5) the increment Al can be written as
Al = Iy(x) + ady] - fy(x)]
= Lly, ady} + Bly, ady] | ot} max [éyl.
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Variational Problems with Fixed Boundaries 1

The derivative of I[y(x) + ¢ &y] with respect to a at & =0 is

Ly, ady] + Bly, oby] | & I max | &y

a—)O . 06

. Ly, ady) . Bly, ady] la I max | dy |
= lim ——+ lim
a-0 o a—0 o

= LD, o1 =

im AL -
da—= 0 Ao a—0

since by linearity L[y a&y aL[y dy] and ﬁ - 0 as o — 0. Hence the variation -

of a functional I[y(x)] is equal to

b o -
— I[y(x) +-ady] at = 0.
% [y(x) +ady] a
Definition. A functional I[y(x)] attains a maximum on a curve y = yo(x), if the
values of I on any curve close to y = yy(x) do not exceed /[yo(x)]. This means that
Al = I[y(x)] - Iyo(x)] < 0. Further, if AT <0 and A/ =0 only ony =Y (_x), we
say that a strict maximum is attained on y = yo(x). In the case of a minimum of

Iony = yy(x), AI 2 0 for all curves close to yy(x) and a strict minimum is defined
in the same way.

Theorem. If a functional I[y(x)] attains a maximum or minimum on y = y(x),
where the domain of definition belongs to certain class, then at y = yg(x),

8 = 0. | (1.7)

Proof. For fixed yy(x) and dy, I[y(x) + ady)] = ¥(a) is a function of ¢ and this
reaches a maximum or minimum for @ = 0. Thus ¥’(0) = 0 leading to

—a——— Ilyo(x) + abyllg=o =0, ie., & = 0. This proves the theorem.

However, when we talk of maximum or minimum, we mean the largest or
smallest value of the functional, relative to values of the functional on close-lying
curves. But we have already seen that the closeness of curves may be understood
in different ways depending on the order of proximity of the curves.

If a functional I[y(x)] attains a maximum or minimum on the curve y = y,(x)
with respect to all curves y = y(x) such that | y(x) — yo(x) | is small, then the maximum
or minimum is said to be strong.

If, on the other hand, I[y(x)] attains a maximum or minimum on the curve
y = yo(x) with respect to all curves y = y(x) in the sense of first order proximity,
ie., 1y(x) = yo(x) I and 1y’(x) = y5 (x)| are both small, then the maximum or
minimum js said to be weak. It is quite clear that if a strong maximum (or
minimim) of a functional /[y(x)] is attained on the curve y = yo(x), then a weak
maximum (or minimum) is also attained on the same curve. This follows from
the fact that if two curves are close in the sense of first-order proximity, then
they are definitely close in the sense of zero-order proximity as well.

This theorem can be readily extended to functionals dependent on several
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: Variables eUIgICUOns, Or dependen; On one or several functions of any number of R
1 o
[y1(x)_, Yo, .. Y2(x)]  or Ma(xy, x,, . . x,)] ' | 1
or & - =3
*1
;f [Z](xls x2) SRR xm), ZZ(XI, X2, © W ey m), T ZP(X[, x2’ e ey m)]- s ,fl,_l:f'_'_
The . -
: necessary- Condition forrextremurn, in all these cases, is still, given by &7 = 0, @ lﬁ
‘Where the Variation § 5 g firied : ional @ 1
My(x)]. : felined in €xactly the same -Way as that for a functiona & l\m
] S - SFA?STDNVQ E Weyis s DQ;., Var iatienal Prabic | M'a
f ‘-,.¢: 1‘ %‘tmtrz ] poiovo Euwloryg eqn! ’ ; : ,“
' : . Eu]er’s Equation Fo¥ b < wn cticn. XNGP - ' t; ﬂr’ =
Y @t UsS examine the EXtremum of the functiona] | W:.
Ik ol il
B b 2 Ll
| 0= " Fix ),y 1.8 & 1n
i ' a ‘ L& Alz"]“f.;!
subjec.t to the boundary conditions y(q) = Y1 and y(b) = y, where Y1 and y, are e ; ,,,;9‘
prescnbf:d at the fixed boundary pomnts g and b, We assume that F(x, y, y') is three b i | !E
times differentiable We have already shownp that the Decessary condition for ap (g ' ” H‘
€xtremum of 3 functiona] g that its variatjon Tust vanish. We shajj now apply € ,L‘
this condition to (1.8), and assume that the admissible curves 6n which an extremum Ca § I d ;
| 1S achieved, admits of contifyeys first-order dérivati\(;@ It can be proveq, however, ‘s R
- that the curve On which an extremupy is achieved, 5 mits of a continuous second- -!,'
order derivative algq (see Section 1.9). 4 y & i i
Let y = y(x) be-the curve which extremizes the functional (1.8) such thyt y(x) (f — “
is twice differentiable ang satisfies the above boundary conditions (see Fig. 1.3). g ﬂ~!’ !
Lety= Y(x) be an admissible curve close to y = ¥(x) such that both y(x) and Y(x) { ""\ I }
| can be ircluded in a one-parameter family of curves (e I" 0
i
Y5 @) = 3(x) + af5(x) - youy) (1.9) ®
M For a =0, y(x, @) = y(x) ang for

=1, yx, a) = Y(x).
y(x) is the variation

-

-

Oy of the function y (see Fig. 1.4)
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Y(a) = J Flx, y(x, @), y'(x, @)) dx (1.11)
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Variational Problems with Fixed Boundaries 9

Yy
. 0 Q.. .= ) x' 0 :....'1. - : . x'
- Fig. 13 Exfremizing curve joining two - Fig. 1.4~ Extremizing curve and an
fixed points. admissible curve between

two fixed points.

Using (1.9) and (1.11), it follows that ‘

b
(@) =J [Fy(x, y(x, @), y'(x, @)) Oy + Fy(x, y(x, ), y'(x, @)y’ ]dx  (1.12)

where a subscript denotes partial derivative with respect to the indicated variable.

- Further, the variation &y( = j(x) - y(x)) is a function of x and can be

 differentiated once, or several times, such that (%) =¥(x) - y'(x) = 6y’. Finally,
~ (1.10) gives from (1.12) the felation ‘ T - ’

b | .
J [Fy(x, y(x), y" (x)&y + Fy (x, y(x), y’ (x))y’) dx = 0 (1.13)

Let us integrate the second term by parts subject to the boundary conditions

(6y), =0 and (&), = 0 (as a consequence of y being fixed at x = g and x = b).
This gives from (1.13), '

g d

a

In view of the assumptions made on F(x, y(x), ¥'(x)) and the extremizing

curve y(x), it follows that F, — gx— Fy on the curve y(x) is a given continuous

function, while &y is an arbitrary continuous function, subject to the vanishing of
dy at x =a and x = b.

Before proceeding further, we now prove the following lemma:Ef/for every
continuois function 7(x),

b
J. D(x)N(x)dx=0 (1.15)

where @(x) is continuous in the closed interval [q, b], then @(x) = 0 on [a, b).



10 Calculus of Variations with App ftions
a point X = { in. a<xsh
and maintans
ce 7)(x) is an arbilra'ry
nains positive 10
Jlows from

Proof. Assume that ®(x) # 0 (positive, say) at ositive
By virtue of the continuity of @(x), it follows that Px) # 0 P
sign in a small neighbourhood xg < x < x; of the point x. Sin
continuous function, we might choose 7(x) such that 7(x) remati
Xy < x < x; but vanishes outside this interval (se¢ Fig. 1.5). It then fo

(1.15) that

b 5 ¢
J P(x)n(x) dx = J | D(x)n(x) dx >0 (1.16)

X0
[xg, X1]. The contradiction

since the product @x)7(x) remains positive everywhere in
d(x) # 0 at some

between (1.15) and (1.16) shows that our original assumption
point % must be wrong and hence ®(x) = 0 on [a, b).

4

|
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Fig. 1.5 A continuous function which is positive in an interval but vanishes
~ outside. ' '

Invoking this fundamental lemma, and from (1.14) we conclude, that

(1.17)

F,

d
y"d?Fy'=0

on the extremizing curve y = y(x). This equation is known as Euler’s equation and
the integral curves of this equation are known as extremals. It should be noted that
the functional (1.8) can attain an extremum only on extremals. On expanding

(1.17) we find that
Fy~ Foy = Fyyy' = Fyyy" =0 (1.18)

which is, in general, a second-order differential equation in y(x) (although some-
times it may reduce to a finite equation). The two arbitrary constants appearing
in the solution y(x) are determined from the boundary conditions y(a) = y, and
y(b) =y

It should be emphasized, however, that the existence of the solution of (1.17)
satisfying the above boundary conditions cannot always be taken for granted, and
even if a solution exists, it may not be unique. However, in many problcms’ the
existence of a solution is evident from the geometrical or physical signiﬁcanc‘e of
the problem. Hence in such cases, if the existence of solution of Euler’s equation
is unique, then this solution will provide the solution of the variational problem
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Viriational roblems with Floed Boundaries I

1A

Fxample 2. Vest for an extiemmm the funectonal

)
\ | |
Ny J(wly'l dvlytyde, o g0y gty Y
1

i

Solutton Heve Buler™s eoquation fs

/ /
vy dyy . 2yl =)
\ i

“which reduces 1oy 2 Clearly, thin eatiemmal cannot satisty the boundary

conditions 0y 1, vl by~ 2 Tk an extremuin cannot be achieyed inthe class
of continuous functiont,

(e
J e
Pcample 3. 'Tewt for extreanwm the functional

\ | '

(Y e
nill y
:. ' Il)l(‘)l j (y'l y}),/(' )/(”) (), y{/l/'/,) |
(

)

0
A2 Solution. In thin cane Puler's equation i
"\ Ay
( \\\,/ &
oy Ay
:/x

y

L \ ' . i ' ¢ £ "nre , 1 ¢
aund it general solution sy €y con x + Cysin x. Using the boundary conditions,

) 4 ' ' ' 4 . y
we find that ¢ 0, ¢, 1 Thus the extremum can be achieved only on the curve

{
‘)'\

/

1
s

yooosin
In the problems cited above, Fuler's equation is readily imtegrable. But this

Fuler's cquation admits of integration,

(1) Inothis case 1o (18) 16 a function of x and y only. Then the Fuler
cquation reduces to /70x, y) 0. This finite cquation, when solved for y, does not
mvolve any athitrary constant, Thus, in general, it is not possible to find y satisfying
the boundary conditions ylay = yy, and y(h) = y, and as such this, vanational problem
does not, i peneral, adimit of a solntion, Example 2 cited above 1 an illustration
of such a problen,

(i) I i (1 8) depends only onx and y', Here Faler’ equation becomes,

d . /
Iy’ 0 (
el (1.19)
which has an itegral I, (oy') = Ca constant, Since thie relation docs not
contain y, 1t can be solved for y” as a function of x. Another integration leads to
a solution imvolving two arbitiary constants which can be found from the boundary

conditions.

sxample 4. Find the extremum of the function

() 4 y//,l/z
(o)l J ‘ S

X
0




12 Caleylys of Variationg With Applications

Solution Before We emb
functiong] ; may be

Y = y(x) from one D
X. This is dye to th
Since the funct

ark on the solution, it may be noticed that the
Tecognized as the time spent on translation along the curve

0int to another, if (e rate of motion v = (ds/dr) is equal to
e fact that gy = (I +yH2 gy

ional ig independen

t of y, Euler’s equation leads to
y = Cix(1 + yyin,

(1.20)
mis may be integrated by introducing Y =tant,t being a parameter. Then (1.20)
EVES X =(C) sin 1 = G, sin ;. hey | S
I 4 = tan t dy = C, sin  dr, (1.21)

. k whjch on integratibﬁrleads to
y:—éj COSI+C2

Elimination of ¢ from the €xpressions for x and y then gives the extremals as
2 —_
X° + (y - CZ)Z = C12’

which is a family of circleg,

(iil) F in (1.8) is de

pendent on y and y’ only. In this case Euler’s equation
reduces to .

Fy~ Fyy#" Fyy” = 0 (1.22)
But K
%(F _ ylel) = Fyyl +Fy’y” _ y”Fy’ _ Fyy’y,z _ Fy’y’y”y,
=Y'(Fy - Fyy - F yyY")
Thus by virtue of (1.22), Euler’s equation has the first integral
F-yF, = (1.23)

where C, is a constant. This equation may be integrated further after solving for
y" and-separation of variables. :

Fi joining gi ints A and B which is traversed by
le 5.| Find the curve joining given points hich i ed
§ f{d‘ f;‘;;tnﬁlz mgﬁng under gravity from A to B in the shortest time (ignore friction
e

' ium). This Ts known as the
\% along the curve and the resistance of the ledldur;)f This Is known as the
Brachistochrone problem to which we have alluded before.
W3 Solution.  Fix the origin at A with x-ax‘is hgrizontal and %;axis vgrtically
, ! ard. The speed of the paticle ds/dr is given by (2gy)"2, g b.emg the
‘ dos:‘?;:atio;a due to gravity. Thus the time taken by the particle in moving from
ac :
A(0, 0) to B(xy, y) 18

. J"de;
t[y(x)l—\/Zé o

y(0) =0, y(x) = (1.24)

R S S S T S AT s i




Vartational Problemys with Fised Toundirie:,

Although the ntegral v mproper, it convergent e the st grand vonoe et

of a,a bt ategral of Baler's equation s geven by (175, which gies, i

stnphification, the relation F oy
/ /
vl 7y { 1 (1.2%)
j ,“(‘I) {l’ut Yoot t, 1 hemyp a paraneter “Then (075) pries, '
]
(’ ( 'IVI ': ’
\1 (n)(,z(" 2 y ,/I (] COY ?,/) (} /,///
) ‘ ) /
/
. f ‘ . d
Iz ¢ i Now, ey
D IR A1 dy 20 sin ooy Ldl , , o
J \( - ) dx ): ! Cy(1 con 2y di : )
L y cott [i4¢/ { . /
c’"} {, Liawhich pives, on integration, the cquation oy [y 972
’b( ) o " ‘),-‘ ,/
( %3( - ¢ St x ~-Cy = ,;(21 sin 21) e (.27,
, (1o

\ \’. i ” B ‘ rgn
A o (5’“ ' Putting 2t = 1, and remembering that y = O at £ = O, we find that €, = 0 Tho

(1.26) and (1.27) give the desired extremals in the parametse form o T
: e ¥ yglle
- - ® '
k) 1A € '
3. A X=

: C |
" 2([, sinty), y = f” oy ty) :m

e a, o . . , o , ( (44!t
which is a family of cycloids with C/2 as the radius of the rolling f,nc!frj./:. fult, )
n C) is determined by the fact that the cycloid passes through By, 4 ).
e AN

AT

N

L
2,

e 4 Example 6. Find the curvewith fixed boundary points such that it rotation zbout
%(m the axis of abscissae give rise to a surface of revolution of UYLl surfacs
\',/

A ATE4d
» AV AMT (A,
Solution. The area of the surface of revolution (Fig. 1 6, 1, o

7

Sy(x)) = 27£J yl 4y dx

b

where the end points A and B of the curve y = y(x) have s-coordinate:,
x,. Since the integrand is a function of , and y/ only, 4 firt inteors] of Folers
equation is

’2

wiey?-E—=-=q
\/] + y/z
| which reduces to y/+/1 +y’? = C,. To integrate this equation, we put y =sipht

Then, clearly,

w * dy
y = C; cosh ¢, dx:%:(,,dt

()
o0

The second equation of (1.28) gives on integration the relation

x=Ct+ C, withy=C cosht (129,

[ %4



q
&N
\?t“

14 Calculus of Variations with Applications

2

p4

Fig. 1.6 Surface of revolution with minimum $urface area.

The elimination of ¢ from (1.29) gives as extremals

I—CZ

. Y =C cosh
- 1

which constitutes a two-parameter fami
are determined from the conditions, tha
points A and B.

As a last example of the extremum
problem of gas dynamics.

ly of catenaries. The constants C, and C,
t the given curve passes through the given

of a functional, we consider the following

Example 7. To determine the shape of a solid of revolution moving in a flow
of gas with least resistance.

Solution.  Referring to Fig. 1.7, assume that the gas density is sufficiently
small such that the gas molecules are mirror reflected from the surface of the
solid. The component of the gas pressure normal to the surface is

p =2pv*sin @

(1.30)
where p, v and 8 denote the density

the solid, and the angle between the
direction of flow.

The pressure given b
down the force compon

of the gas, the velocity of the gas rela

; tive to
tangent at any point of the Surface w

ith the
y (1.30) is normal to the surfac
ent along the x-axis acting on

ds (=+/1+y’? dx) and radiys y(x) in the form

dF = 2pv?sin? 6. [21y,1 + y“?] sin 6 dx

€ and one cap write
a ring PQ of width

(1.31)
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4
L §
ds
PIO 3 |
Direction of : = Ht B
gas flow. Lo
: — —p
e N X
- L
i

Fig. 1.7 Solid of revolution experiencing least resistance in a gas flow.

Hence the total force along the x-direction is

F=J‘ 4mpu? sin3 9- /1 +y”2 y dx (i.32
0

To make further progress, we assume

’

y -y
(1 + y/2)3/2
where the slope y’ is taken to be small. Thus from (1.32), the total re31stance

experienced by the body is

sin 6 =

I}
F = 4npv? j y3ydx (1.33)
0

The problem now is to find y = y(x) for which F is minimum. Thus (1.33)
constitutes a variational problem with the boundary conditions

Since the integrand in (1.33) depends on y and y’ only, a first integral of
Euler’s equation is )
. d 2 F - 3' ‘FS' 35
yl3 _3_zx_(yy’ ):0 it - C (1.35)

8, . wW33-J7
IgJ Y e

Multiplying (1.35) by y’ and integrating, we get Jhy - 5%y
23, — 3 -~

Yy y=Cj, \[9 /,'2‘5‘38 gt

5153

y 0'
-
"‘X hg) J 3




16 Calculus of Variations with Applications

Cy being a constant. One more Integration gives

y = (Cox + C;)* (1.36)
Using the boundary conditions (1.34), we obtain
4/3
C2 = 'RT, C3 = 0
Thus ther required function ¥(x) is given by

} 3/4 = y *,_.; )
x) = RG) |

IFin (18) istinear iny such thag v e

Fx, y, y) = M(x, y) + N(x; y)y’

then Euler’s €quation reduces to

M _ v _,
& =0

which is a finite equation, and not a differential equation. Thus the curve defined
by the above equation does not, in general, satisfy the boundary conditions at
X = a and b. Clearly, in this case the variational problem (1.8) does not have
(in general) a solution in the class of continuous functions. The reason for this lies

in the fact, that, when the above equation holds in some domain of the xy-plane,
then the integral

b b
I[y(x)] = f F(x,y,y") dx = J (M dx + N dy)

a

U..Jimes independent of the path of integration. Thus the functional is the same
on all admissible curves leading to a meaningless variational problem.

1.3 Variational Problem for Functionals of the Form

b
f FCE Y0, 320, -y 30 Y G0 - 3i(0) i

where the function F is differentiable three times with respect to all its arguments.
To find the necessary conditions for the extremum of the above fanctional,

we consider the following boundary conditions for y,(x), y,(x), wevs PylE)
yi(a) = Yy, yo(a) =Yy, ..., yi(a) = Y, (1.37a)
yi(0) = Zy, yo(b) = Z, ..., yu(b) = Z, (1.37b)

where Y;, Y,, ..., Zy, Z, ... are constants.

We vary only one of the functions ) G=1,2, .. n), keeping the others
fixed. Then the above functional reduces to a functiona] dependent on, say, only
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Variational Problems with F ix;d Boundaries 17

one of the functions y,(x). Thus the function ¥i(x) having a continuous derivative
must satisfy Euler’s equation

Fy -2 Fe=0

where the boundary conditions on y,(x) at x = g and x = b are utilized from (1.37a)
and (1.37b).

Since this argument applies to any function y(x) (i = 1, 2, ..., n), we obtain
a system of second-order differential equations

Pogh=0 G=l2..m 3
These define, in general, a 2n-parameter family of curves in the space
% Y1 Y2, .., yp and provide the family of extremals for the given variational -
problem.

Let us illustrate the above principle by considering a problem from optics.

Example 8. Derive the differential equations of the lines of propagation of light
In an optically non-homogeneous medium with the speed of light C(x, y, z).

Solution. According to well known Fermat’s law, light propagates from-one

point to another point along a curve, for which, the time T of passage of light will
be minimum. \

~If the equation of the desired path of the light ray be y = yx) and z = z(x), -
then clearly, ' B

T"J‘x2 ds—r2 L4y +272 dx

¢ J, Cxyo

X]

(1.38b)

where s is a line element on the path.
Using (1.5), one gets the system of Euler’s equations

1+y’2+z'2E+i[ y' }

c? W& eyt

1+y 2+ 9Cc 4

c? 97 T dr

Z“'} =0
Cyl+y'? 472
which determine the path of the light propagation.

It should be noted, however, that in the above form, the principle cannot
always be applied. Let P, be the centre of a hemispherical mirror. The length of
the path of the ray emerging from P; and reflected by the mirror at its pole p to
a point P, on the straight line pP; will be longer than the path P1QP,, consisting
of two rectilinear segments OP, and P,Q, corresponding to a reflection by the
mirror at a point Q distinct from p. This difficulty can be circumvented by removing
from the formulation the specific mention of fixed end points. A better formulation
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is as follows: A curve can represent the path of a ray of light if and only if, each
point P on I, is an interior point of a segment P, P, of I"which possesses the property
that the integral (1.38b) for T taken along the segment PP, of I"has a smaller
value than that taken along any other curve of light from a point source Py(t1, X1,
Y1» 21). After a given time 1y, such a disturbance will be seen on a surface F(Tp)
vhich, according to Fermat’s principle, is such that each point Py(fy, X2, Y2s 22) 18
jomed to Py by an extremal for which the integral (1.38b) takes the value T, this
value being common to all points of F(Tp). The surface F(Ty) is a wave frong__and
for various values of Ty, a succession or family of such wave fronts isrobtém_erd-

One can show-that the family of wave fronts corresponding to the emission
from a point source at P, isidentical to the family of concentric geodesic spheres
centred at Py, a’problem of the calculus of variations and determined by the
integral (1.38b). ;

Remark 1.  Certain interesting results follow if we consider the probl_em of
propagation of a light ray in an inhomogeneous two-dimensional medium with the
velecity of light, proportional to y (see Fig. 1.8). In this case the light rays are the
extremals of the functionaly

& b {1+ y'2)”7'
. ﬁ}y 11y<x)1-£ Q07

Here the integral of Euler’s equation gives y(1 + y*2)"2 ='(?‘l, whose integration
leads to ' '

(x+C)+y? = 512

Y 4

»x
0 D

Fig. 1.8 Path of light ray propagation in an inhomogeneous medium.

This is a family of circles centred on the x-axis. The desired extremal is the
one which passes through given points. This problem has a unique sollutlon', since
only one semicircle centred on the x-axis, passes through any two points lying in

the upper half plane. ' _ | .
é)cfnsider the curve g. The opticul path length g is the time T(g), during which

the curve is traversed with velocity of light véx,y) = y. It may be shown that one
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Variational Problems with Fixed Boundaries 19

cnd_ of the part AD of the semicircle g, which lies on the x-axis, has an infinite
optical path length. Hence we call the points on the x-axis as infinite points. We
shall consider the semicircles with c. ntres on the x-axis to be straight lines, and
the optical path lengths of the arcs of such semicircles, to be their lengths: and
the angles between the tangents to the semicircles at their intersections to be the
angles between such straight lines. Thus we derive a flat geometry in which many
of the postulates of ordinary geometry remain valid. For example, only one straight

line can be drawn through two points (only one semi-circle centred on the x-axis _ -
- can’ be drawn through two points on the semicircle). Two stralght lines will be -

deemed as parallel if they have a common point at infinity (i.e., two semicircles

touch each othér at a cértain point B:lying on the x-axis-as shown in Fig. 1.9).- -
Further it s possible to draw throughia given pomt A, not lymg on the stralght.

line g, two straight lines g, and g, -parallel to g.

vi

- X

0

Fig. 1.9 Optical path in an inhomogeneous medium.

We have thus obtained an interesting new geometry, which is called the
Poincare model of Lobachevskian geometry in the plane.

Remark 2. The foregoing remarks at once lead to the question of the possibility

of drawing an extremal through just any two points with distinct abscissae. An
answer to this question can sometimes be found from the following theorem due

to Bernstein [14] (proof omitted):
Consider the equation

y' = Fxy.Y) (1.38¢)

If F, F, and Fy are continuous at each end point (x, y) for every finite y” and if
there exxst a constant k > 0 and functions

0?=a(x.,v)20, B=pBxy=20

‘bounded in every finite portion of the plane such that

Fx, y,¥) >k  1FxY )< ay?+ B,
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then one and only one integral curve ¥ = §(x) of (1.38c), passes through any two
points (a, A) and (b, B) of the plane, with distinct abscissae (a #b).
Consider, for example, the functional

I:f e’ (' - 1) dx
Its Euler equation is
=4y
Since F(x, y, y) ='2;y(1 +y?), we fhave
Fy=2(1+y% 22 =k and, further, |
LECx, 3, )12 1291 +7y2) <2 IylyZ+ 21yl

sothat @=f=21y120. Hence by Bemstein’s theorem, there exists an extremal
through any two points with distinct abscissae.

On the other hand, it can be shown that it is not possible, to draw an extremal
of the furctional

1[y<x)]=f y? + 1+ 7] dr

through just any two points of a plane having distinct abscissae.

I//Functionals Dependent on Higher-Order Derivatives
Darive.  Euler - PolsBon g1

~ Y
5 E%Let us now consider the extremum of a functional of the form

2

&
7¢ b
T j Fx, y(x), y'(x), . .. ,y™(x)) dx, (1.39)

a

\Y

where we assume F to be differentiable n + 2 times with respect to all its
arguments. The boundary conditions are taken in the form

¥(x0) = yo. ¥ (x0) = 35, ...,y V(xp) = B o, (1.40a)

y(xl) = y,(xl) = y]/ yreey y(n—])(xl) = y](n_])' (140b)

This implies that at the boundary points the values of y together with all their
derivatives upto the order 7 — 1 (inclusive) are prescribed. We further assume
that the extremum of the functional I is attained on a curve y = y(x) which ig
differentiuble 2n times, and any admissible comparison curve Y = y(x) is also 2
times differentiable. It is clear that both Yy =y(x) and y = y(x) can be included in
a one-parameter family of curves

Y%, @) =3(x) + a[H(x) - y(x)]

such that y(x, @) = y(x) for & = 0 and yix, @) = y(x) for a =1.
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Variational Problems with Fixed Boundaries 21

Now on the curves of the above family, the functional (1.39) reduces to a
function of ¢, say, ¥(a). Since the extremizing curve corresponds to & = 0, we
must have ¥'(a) = ( at o = 0. This gives, as in Section 1.2, for an extremum,
the relation

b
[ﬁ j Flx, )6 @), y'(5 @), .oy (x, @) daJ

=0 o

o T T et ' )
=:[ F5}+‘F'6y’+...+'F(,,,6y‘”?)d5c‘='0 R § 3}

) Jntegrate by parts the second term on thﬁ ngthand sxde once and the third term,

twice, yleldm g

[ s [(4r o

jF by du = [Fy 81, - H‘i ),)®J:+Lb(§ﬂ~)5ydx

and so on. The last ‘erm on the right-hand side of (1.41) can be written by
successive integration by parts as

b ’ I - b
d Ve
J.a Fyw & dv=[Fm &), - [(d_ F y(")) &' 2)J

*(d
+ ..+(—1)"j (dx” (n))éydx

By virtue of the boundary conditions (1.40a) and (1.40b), the integrated parts in
all the above expressjons on the right side vanish. Thus from (1.41), we find that

on the extremizing curve

=

bro
d d* nd
J-(y dxF +d2F +(l)d”F(,.))5ydx 0

a

for an arbitrary choice of dy. Due to conditions of continuity imposed on F, the
first factor in the foregoing integral is a continuous function of x in [a, b]. Thus
invoking the fundamental lemma of Section 1.2, the runction y = y(x), which

extremizes | satisfies

d d* nd”
Fy‘—zx—wa&x—sz +(@1}) e Fm 0 (1.42)
. 4

which is known as the Euler-Pcisson equation. j
Clearly this is a d1f?ereniiﬁi%quatlon of the order 2n and hence its solution

involves 2n arbitrary constants. These are found by using the 2n boundary
conditions (1.40a) and (1.40b).

-»
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C{ixgmple 9, Determine the extrema] of the functional

- !
I[y(r)]:J‘ (El/ly"z +py)dx
-/

o
Subject to

Y=1) =, Y= =0 =0 yo=o

Solution, _This’ Variationa]

. problemr arises in finding the axis of a flexibly -

bent Cylindrica] beam'clamped at the ends. If the

beam is homogeneous, p and u
are constants, Then Eyle

I-Poisson’s equation (1.42) becomes
; d? ,
P+ W) =0

whose solution sa[isfying the prescribed boundary conditions is

-=__P 2.7, 14
Yy 24,[1(x - 2l°x + 1%

1.5 Functionals Dependent on Functions of Several
Independent Variables

One or more partial differentia] equations. Consider, for example, the problem of
finding an extremum of the functional

Ju(x, y) ] = fj F(x, y, u, Uy ) dx dy (1.43)
G

over a region of integration G by determining 4 which Is continuous and has
continuous derivatives upto the second order, and takes on prescribed values on
the boundary of G. We further assume that F is thrice differentiable.

Let the extremizing surface be u = y(x. V) so that an admissiple one-p
surface is taken as

arameter

uly, y, @) = u(x, y) + an(x, y)

where n(x, y) = 0 on the voundary of G. Then the necessary condition for

extremum is the vanishing of the first variation o
a.J = (ijlu + an])
o -
This implies from (1.43) (
f f (Fu+ By, e+ B, ) dx dv =) (1.44)
&
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Variational Problems with Fixed Boundaries 23

which may be again transformed by integration by parts. We assume that the
bopndary I' of G admits of a tangent, which turns piecewise continuously. Then
using the familiar Green’s theorem, we have

J:[ (n.rFu.r + n)'Fuy)dXdy:J TI(FuX dy—Fuy dx)
¢ e d

) P
- J.J. n[; F, + 5 F,,y]. dx dy
A '
Thus from (1.44),

. . P B )
Lj I:Fu '__a—);Fu:Y _éy_Fuy:lndXdy+j‘I:n(Fux dy_Fuy dX)—O

Since 17 = 0 on I' and the above relation holds for any arbitrary continuously
dlfferentmble function 7, it follows from above that by using the generalization
of the fundamental lemma of Section 1.2 that

J J

3 Fu - > F, =0 (1.45)
The extremizing function u(x, y) is determined from the solution of the second-
order partial differential equation (1.45) which is known as Euler- Ostrogradsky
equation. If the integrand of a functional J contains derivatives of order higher
than two, then by a straightforward extension of the above analysis, we may
derive a modified Euler-Ostrogradsky equation for determining extremals. For
example, in the case of the functional

Fu_

J[M(X, )’)] = Jj F(X, Y, U, Uy, Lly, Uy, “_ry’ ”_yy) dx dy
G

we get the equation for extremals as
J° 82

J J J? _
Fu_é;Fu’—&yE‘V+82F““ ﬁ u‘) 3}}2 uyy_o

~the Fudes . o8 oap

4 ¥ Example 10. EFmd the Euler-Ostrogradsky equation for

BO v [][3) (3o

where the values of u are prescribed on the boundary I" of the domain D.

JLC

S

Solution. Tt clearly follows from (1.45) that the equation for extremals 1s

2
V2u*a——+3y;l , , (1.46)
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.6 Variational Problems in Parametric Form
- o . dimes necessary to
In many vartational _::_._c:_,f.. it is more convenient and sometnmes nec Y

make use of a parametric representation of a line as follows:

47
V=000 y= W) fory St <y (147
Consider the functional
f
JLX, vl = | I, x, v, x, y) di, . (1.48)
o

where the integration is along the line (1.47) and a dot denotes derivative with
respect to £ Inorder that the values of the functional (1.48) depend only on :_n
line, and not on the parametrization (which can be accomplished in a number of
ways), it is both necessary and sufficient that the integrand in (1.48) docs not
contain £ explicitly and that it is homogeneous of the first degree in x and y. Thus

FQx, y, ki k9) = kY, v, 5, ), k> 0, [1.48)
Take, for example, ,

"
e, y(O1 = | @ (x(e), y(1), X(1), y(1)) dt,
fo
where ¢ satisfies the homogeneity condition (1.49). Let us now consider a new
parametric representation

r=40EMm =0, x=x(1), y=y1)
Then

/f
dT

nﬁ ’

| 4] é i
G, y(1), X(1), (1)) dt = ._. P(x(), Y(T), x L T)C (1), yo(T) L (1)
T0

o

But since ¢ is a homogeneous function of first degree in x and y,

Plx, y, X, w v.\a m_\v = m\s?. Y .m.? <L

This gives from the above equation
1 T
.‘. Plx, v, X, ) dt = ‘_‘ ¢(x, y, X, y;) dr.
10 To

Thus the integrand remains unchanged with a change in the parametric representation

)
For example, the area bounded by a ciosed curve given by .— (Xy — yx)dr is a
functional which can be put in the form 4

1

Ix@), y()] = D(x,y, x,y) dt,
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Variational Problems with Fixed Boundaries 27

where @ is a homogeneous function of degree one in x and 3. Thus to find extremals
for I, one has to solve Euler’s equations

'w k-mﬁnc (1.50)
However, these equations are not independent, because these must be satisfied by
a certain solution x = x(1), y = y(1), and any other pairs of functions with a different
parametric representation of the same o:?m. which, in the case of Euler’s equations
being independent, would conflict with the: theorem of existence and unigueness
of a solution of a system of differential equations. Thus we conclude that in
(1.50), ariy one equation is a consequence of the other and to find the extremals,
one has to solve any one of the equations (1.50) along with the equation x2 +y? =1,
which shows that the arc length of the curve is taken as the parameter.
The Weirstrassian form of Euler equations (1.50) 1s

?, ®,=0, @

L (151)

r G_QN +%J§
where r is the radius of curvature of the extremal and @ is the common value
of the ratios
1= 0ulyt = 95/a% = - 9ylxy
For example, in finding the extremals of
1
Mx W] = | (&7 +3)" + a0 - yr)l dt
1

we first notice that the integrand @(x, y, x,y) is homogeneous of degree one.
Using Weirstrass form of Euler equations, we find that

~ 42 __ 2 _ 1 .
Nﬂ»\.v =as, Nﬂvk =-a; 3 - A\..GN +v.~Nvu\N AHMNV

give 1/r = 2a*, which shows that the extremals are circles.

1.7 Some Applications to Problems of Mechanics

Hamilton’s Principle

One of the most fundamental and important principles of mechanics and mathematical
physics is the principle of least action due to Hamilton (William Rowan Hamiiton
(1805-1865), an Irish mathematician, also known for his invention of quaternions).
Using this principle one can deduce the basic equations governing many physical
phenomena. Let us formulate the principle for a dynamical system of particles and
begin by considering the case of a single particle.

ﬁ\én consider a particle of mass m moving in a force field. If the position
vector of the particle with respect to a fixed origin is denoted by r, then by Newton’s
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1.6 Variational Problems in Parametric Form

In many variational

.. _ . 0
problems, it is more convenient and sometimes necessary t
make use of a para

Metric representation of a line as follows:

&

A=), vy = F}.: for th<t< # C.hﬁv

Consider the functional

h .
X0V = | Fi, 2y, 5 5y . . | (1.48)

o

where the integration is along the line (1.47) and a dot denotes denvative with
Tespect to r. In order that the values of the functional (1.48) depend only on the
line, and not op the parametrization (which can be accomplished in a number of
Ways), it is both necessary and sufficient that the integrand in (1.48) does not

contain ¢ explicitly and that it is homogeneous of the first degree in x and y. Thus

F(x, y, kx, ky) = kE(x, y,%,9), k> 0. (1.49)

Take, for example, .

Tx(1), y(1)) = ._. 9 (x(®), (), X(2), (1)) at,
0

where ¢ satisfies the homogeneity condition (1.49). Let us now consider a new
parametric representation

T=LOCM =0, x=x(0), y=y)
Then

1 T s o
._. PLn), Y0, X0 ¥ dt = | p(x(1), y(1), X(7)6 (), y(7) (7)) aﬂa :
1) 70
But since ¢ is a homogeneous function of first degree in x and y,

D53, 508,30 6) = B,y i, o).
This gives from the above equation

7|

h . w
‘ﬁ GAH. vr \,.ﬁT .Xv QN = ﬁhHu vr HT v\ﬂv Q\H.
0]

70
Thus the integrand remains unchanged with a change in the Parametric representation.

1y
For example, the area bounded by a ciosed curve given by (Xy - yi)dr is a

t
functional which can be put in the form _

V]

x(0), yO)l = | DP(xy, xy) d,

h
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where @ is a homogeneous function of degree one in x and y. Thus to find extremals
for 1, one has to solve Euler’s equations
0, -Lo.=0, 0,-La;=0 (1.50)
However, these equations are not independent, because these must be satisfied by
a certain solution x = x(£), y = y(1), and any other pairs of functions with a different
. parametric REamSE:os of the same curve, which, in the case of Euler’s equations
being independent, would conflict-with the theorem of existence and uniqueness .
of a solution of a system of differential equations. Thus we conclude that in
(1.50), any one equation-is a.consequence of the other and to find the extremals,
one has to solve any one of the equations (1.50)-along with the equation 24yt =1,
which shows that the arc length of the curve is taken as the parameter. o
The Weirstrassian form of Euler equations (1.50) is

Dy - Dy

S ——— 1.51
G_AMN + vﬁvw\m A v

1
-

where r is the radius of curvature of the extremal and @, is the common value
of the ratios

p1= !y’ = d5/%* = - ¢/ %y
For oxmBEP.E finding the extremals of
n
Ix(r), yol = | [&* + )" + a’(y - yx)) di
10

we first notice that the integrand @(x, y, x,y) is homogeneous of degree one.
Using Weirstrass form of Euler equations, we find that

| .
F.=a F,=-a% F=-—/7= (1.52)
AHM + %Mvu\w

give 1/r = 2a*, which shows that the extremals are circles.

1.7 Some Applications to Problems of Mechanics

Hamilton’s Principle

One of the most fundamental and important principles of mechanics and mathematical
physics is the principle of least action due to Hamilton (William Rowan Hamiliton
(1805-1865), an Irish mathematician, also known for his invention of quaternions).
Using this principle one can deduce the basic equations governing many physical
phenomena. Let us formulate the principle for a dynamical system of particles and
begin by considering the case of a single particle.

ﬂd\a consider a particle of mass m moving in a force field. If the position
vector of the particle with respect to a fixed origin is denoted by r, then by Newton’s
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Law of motion, (he Path o the particle is poverned by the equation

.- - .J wv
m d _. f, !
de?
where s (he force

actimg on the particle
Now

(e ) - path and
sider any other path v 1 dr on (he proviso that the true path

,. ., . This demands
the varied path comcide at 1wo distinet instants ¢~ ¢, and 1 £,. This dem
that

or _: = dr _: =) (1.54)

Atany intermediate (ime t, we examine the true path r and varied path r + mﬂ.
Taking the dot product of variation dr into (1.53) and integrating the result with
respect to time over the interval .Q: h), we get

1) )
m h\ufu or - 8¢ |di = 0 (155)
1 «: ) , ‘

Integrating the first (erm in (1.55) by parts, and by using (1.54) we find that

, NESD VPR R A L .
! ' 2 0 n {5) n\ \
| “O\om Rﬂ—..%n&ﬂi M—i..%_. - S..% ar dt
i . J oy dt dt | ’ dr -\ di
12 2 173
=-§| m[AEY ,_ ~6| Tdi
J, 2\ dt A

Ssmaﬂ_.mﬁrnﬁsmno n:on@\ WSASE:M of the particle. Substitution of the
above relation in (1.55) then gives

1Y)

(6T+f-6r)dr=0 (1.56)

f

This is Hamilton’s principle in its most general form, for a single particle. Now
consider the case when the force field fhaving components (X, Y, Z) is conservative
which implies that

frdr(=Xdr+Ydy+2Z7dy

is the differential of a single-valued function @Xx, y, 7). This function is called the
force potential and its negative, ,mww V, is the potential energy of the partice. Thus

f:or=60=-46y

and its substitution in (1.56) gives

1
& (T-V)di=0 (1.57)
i
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which s Hanilton's proansciple This stabes that e etion 15 et thiat the ietens sl
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If the torce field is non-conservative (e.g., s ;_EE: Ve 8y \3::; the potential

energy function does not exist, but (1.56) sl holds and £+ or 10 the work de

rize
Il

by the force f in a small displacement or. The foregoing study can e easily cxtendesd

to a system of N particles by summation and to a continuous system by integratio

Thus for N particles, the kinetic energy 17

N | Q—.» \*
= —m, —
20
"
and the total work done by the forces is X f, - or,.
y=1

In fact, the principle applies equally well to a general dynamical
consisting of a system of particles and rigid bodies.

Let us now apply the above principle to derive the equation of vibrat

rectilinear bar. A displacement from the equilibrium position ufx, t) wi

function of x (measured along the bar in the undisturbed position) and time ¢ T1

the kinetic energy of the bar of length [ is

| - 2
1 ou |
= - T N&\v

We assume that the bar is slightly extensible. The potential energy of an !
bar with a constant curvature is proportional to the square of the curvature
the differentidl dV of the potential energy of the bar is

12)?

%M 1 + M\m&l &N «p
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28 Calculys of Variations with Applications

law of motion, the path of the particle is mm«ﬂ.rma by the equation

(1.53)

0 R QPP B

Ny other path r + & on the mw._oswo that the true path and
o cide at two distinct instants ¢ - t; and t = t,. This demands
a

—
i

- %H_M_ H,%H_S HI.Oy . e i ey o _.

L B,

T ¢ 7))
At any Intermediate time ¢, we examine the true path r and varied path r + ma ‘R
‘Taking &nhoﬂ Product of variatioy & “into (1.53) w:.mqaﬂmmamﬁmzm the result with - )
Tespect to fime' (7.

over the interval (z,, h), we get

e

: ¢
(s (155) it
.m mEL Set oy |di = | »
*, o g Or D Orjdi=0 pe
ISt term in (1.55) by parts, and by using (1.54) we find that %\
, .Nﬁ/ﬂm r«» f.\ v », . ».-.1 ; =
o 5 dr b (ar fdr -4
_ | . —.Qmu..\.: M.%H :I.‘\._ M\.%N dt .‘
? ! t 2 ! .,m F
, ,_‘ | =-0 ‘m(dr dt=-§ Nﬂ&. .
% ; ) 2 \F) , q”
| __ I g i
\ ‘, m where T is the kinetic energy WSEQ&VN of the particle. Substitution of the ﬁ(’!
B above relation in (1.55) then gives O
w 1§ mL “
(6T+f-6r)dr=0 (1.56) m_ﬂ‘
4] -
This is Hamilton’s principle in its most general form, for a single particle. Now {’r
consider the case when the force field f having components (X, Y, Z) is conservatjve (7
which implies that

m.m:ux&+~\&+mm§

2). This function is called the
V, is the potential energy of the particle. Thus

_.msa&mo:w:mao: m_.zm_m-é_ﬁ%m ?so:.o:ﬁxé,
force potential and its negative, y

»

(
f 6r=60=- oV ‘o
and its substitution in (1.56) gives o
P 0‘/
m.‘ (T-V)dt=0 (15 '
1] “ Cl
| “a
| @g




s

Variational Problems with F ived Boundaries 29

which is Hamilton’s principle. This states that the motion is such that the integral
of the difference between the kinetic and potential energies is stationary for the
actual path. The difference T-V is known as the Lagrangian function. It can be
shown further that this integral is a minimum: for the true path, as compared with
any neighbouring path having the same terminal configurations, at least over a
sufficiently short time interval..

From Hamilton’s principle, one can derive another important principle, known
as Hertz’s principle. This states Emnm particle: (er'a system) moving on a surface

‘without external forces acting on it follows a geodesic ::o.k

A line g is called the geodesic on a surfacelif at each point of g, the principal

_normal coincides with the normal to the mcnuwmw,_kw.m: sxample of Hertz’s principle,

we may nofe that a point on a spherical surface moves along a great circle if it

“is not acted by external forces. Similarly, a point on a cylindrical surface moves

Jw@ ‘fopological methods in variational. problems (Lyusternik [2]), one can
show" that on’any “mooth closed surface, there are at least three closed geodesic
_,,Emmwmm,ﬁ exarfiple, an ellipsoid has three symmetry planes, and the ellipses, along
which these three planes cut the ellipsoid, are closed mmoaoaomu

If the force field is non-conservative (e:g., a dissipative system), the potential
energy function does not exist, but (1.56) still'holds.and £+ &r is the work done
by the force f in a small displacement Sr. The foregoing study can be easily extended
to a system of N particles by summation and to a continuous system by integration.
Thus for N particles, the kinetic energy is

mwamw,w,mm:x under the same n:ocamgsnmmrv

N 2
_s L [dn
¥'= m._ 2™ "dr
N
and the total work done by the forces is 2 £y Oy,
k=1

In fact, the principle applies equally well to a general dynamical system
consisting of a system of particles and rigid bodies.

Let us now apply the above principle to derive the equation of vibration of
a rectilinear bar. A displacement from the equilibrium position u(x, t) will be a
function of x (measured along the bar in the undisturbed position) and time ¢. Thus
the kinetic energy of the bar of length I is

NCAY
T= 7)), Pl 5 dx

We assume that the bar is slightly extensible. The potential energy of an elastic
bar with a constant curvature is proportional to the square of the curvature. Thus
the differentidl dV of the potential energy of the bar is A

LY azwa :
2
_ 1% M
av=43/ |1\ & dx B
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30 Calculus of Variations with, Applications

5 . is-curvature
k being a constant. Thus the potential energy of the entire bar, whose axis-C
18 variable, is

1
w dy d%u o
QIM\, ] Wﬂ 1+ Mbﬂ dx

According to our assumption of slight extensibility, the deviations of the bar from
the equilibrium position are small, and the term (Ju/dx)? may be ignored. Now by

.,,qum:ouw.‘mbnuoﬁo, the integral S P T T

.. .‘Ju 1oy 1, (%) K (o Kw
o 1 r5p—] -+ dxdfi: | ‘Lopidu X ]
s p._vo ,mb ) 2\x2) | " SEAASY 3 Lyx,\ 2 w ,

will be an extremum for fixed terminal times ¢, and t,. The Euler-Ostogradsky

IR 2

2 3 _— 1 vy % &.. 4 _w \ "
€quation then gives v /7y, Boud ) = ﬁf%ﬁﬁqﬂ_; o\ 32 amwa -
ANEL AL U 22 \adme ) T
4 g +m,9»@‘m =0 EEN I NN A ,u., SENOTS
a\" dr )" x2" 2 - (AN \4 2=
Ny + dﬂ.ﬂr/nogiv W

which is the moéEE/m equation for displacentent wu(x, 1).

In a similar manner it can be shown that the differential equation far the

~displacement u(x, ) of m‘EmEv\ flexible and almost inextensible homogeneous

string from its equilibrium position is

- 9 _T. 9%
at P’

where T and p denote the tension and the line density of the material of the string.

There is an important generalization of the above equation, when the string

is acted on by a uniformly distributed linear restoring force, directed towards the

Juilibrium position. This leads to adding a term of the form — ky (k being a

positive oo:mSWc&m %m right-hand side of the above equation, The new equation

is known as th¢ Klein-Gordon equation which, in its general form. is given by

2
FJ J w =Viu-huy (2= Tlp J——
o* gpe VA R
{

1.8 Variational Problems Leading to an Integral Equation or
a Differential-Difference Equation

Thus far we have been concerned with variational problems involving functionals

formed by integrating a certain differential expression in the argument function.

But more general classes of functionals are often encountered in variationg] problems.
Let us consider the functional

1¢] = % g K(s, 0(5)9(0) ds dir + % (@) ds - 2 % B()f(s) s,
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Variational Problems with Fixed Boundaries 3]

which we want to extremize. Here K(y, 1) is a given continuous function with
Kis, 1) = K(1, ), f(s) is a given continuous function of s and ¢ (5) is the unknown
continuous function, All integrations are confined to the interval a < s < b,
@ 1< b We replace ¢ by ¢+ €€ and consider /(¢ + £6) = (&), The variation
O given by |dW/de], o is obtained after some transformation as

h b

2 L] KGs, D) ds + de) - f(0) | de.

a u

Hence the requirement 7 = 0 for an extremum leads to Fredholm integral equation

b

K(s, D) ds + (1) = f(1).

[

as Euler equation for the problem.

et us next consider another functional

M01= | [p() (@) + 200+ 1) ¢(x — 1) = ¢ *(x) - 20(x) f(x)]

which is to be extremized. Here the argument function is continuous and has a
piccewise continuous derivative in the entire interval — oo < x < oo. Now,

§1=|4 d 14+ ) . /

=2 | CWI-(p") + ¢x +2) + plx - 2) - $(x) - f(x)] dx

Now the vanishing of oI for arbitrary { gives
(p¢) = ¢x +2) = ¢x =2) + §x) + fx) = 0

which is a differential-difference equation for the argument function ¢(x).

1.9 Theorem of du Bois-Reymond

It may be recalled that in deriving Euler’s equation for the functional (1.8), it was
assumed that the admissible functions admit of continuous first order derivative.
However, a variational problem with integrand F(x, y, y') is also meaningful when
Y is required to be only piecewise continuous.

Consider first an actual minimum problem, such that y(x) is that function with
continuous first and second derivatives, which renders I in (1.8) a minimum. Then
it can be shown that y(x) yields a minimum if we expand the class of functions
to include functions y* which need not have second derivatives. In fact, according
to Weirstrass approximation theorem, we can approximate the function y* by a
polynomial p(x) and y* by the derived polynomial p'(x) as closely as we like,
where p(x) satisfies the boundary conditions p(a) = y, and p(b) = y; as in
Section 1.2. Then clearly I[p(x)] differs arbitrarily little from I[y*]. But since
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ivatives,

p(x) is an admissible Comparison function with continuous second ﬁwwzé |

Mp™)] 2 Ify(x)) and therefore I{y*(x)] > I[y(x)]. This proves Lie Fes | problem .
We next prove our assertion in Section 1.2 that if in this <E..&conm P i

Y(x) is the €xtremizing function (satisfying the boundary conditions) admi

first order continuous amaéaé, then y(x) admits of a nouccc.o:m moommm
derivative also provided that Fyy # 0. This is the theorem of du Bois Reyim
(see Courant and Hilbert [3a])

We first prove t

in [gq, b] and if

T -

P : ion |
he following lemma: It $(x) is a piecewise ooE.Ecocm functio

o

. PO . -
.‘. I (x) dx = 0

holds for arbitrary, continuous functiop N(x) satisfying the condition

'

b /

_. () dx = 0, (1.59) z

¢ then ¢(x) is 4 constant, . .
To prove this lemma, we first note that the relation ( 1.58) is clearly satisfied 1

b ]

for constant ¢. We now fix 3 constant C such that ._. (- C)dx =0 for the given o
4 5

b 2

. Then from (1.58) and (1.59), we have ‘_. (¢-Ondx=0. Setting 7 = ¢-C m_
, b ’ |
in this relation giyes ‘_. (0-C)%dr =0 and this proves the lemma. This resy]t i

can be generalized ip the following manner: If ¢(x) is a piecewise continuous

function satisfying

b
~_. M dx =0 for all continuous functiong N(x) such that

s | X"ndx=0

a

b b b | !
._. Ndx =0, MNdx=0, ..

then ¢ is a polynomial of nth degree.
To prove du Bois-Reymond’s theorem we note from (1.13) that the relation
b

[F,{+F, {dx =0

a

holds for any continuous

ly differentiable func
Putting F,=4, Fy

tion {(x), Satisfying ((
= B, we obtain, after in

tegration by parts, th
k_ N_
.— 3?&3&“.— U(B - A)dx = g

xq xq

select an arbitrary functjon ¢’

X)

Xo) = ﬁc:v =0.
€ relatiop

We

= T which is continugyg and satisfieg

Ndx = {(x) - §(xg) = 0
0

X
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Applying the previous lemma, we obtain

o

X

wlmn@;‘_

1
Fydx=¢ (1.40)

X0

¢ &

where ¢ does not depend on x. Equation ( H.o.ov takes the place of Euler’s equation.
Now since .K‘_ Fy dx is .Emoao:nmc‘_n with respect to x, it follows from (1.60) that
- . X0 I I T ;
~ F,alsois Emmoansmmv_nu Hence Euler’ mrnmcwmwm -
N

€

holds. Now if F is twice continuously differentiable with respect to its arguments,
and further Fyy # 0 is satisfied, it follows that the piecewise continuous function
¥ is also continuous and has a continuous derivative. Because, if F,s # 0, y’ may
be expressed as a continuously differentiable function ¢(x, y, Fy). Further by
virtue of (1.60), Fy is a continuous function of x and y’ is also continuous. Herice
the arguments y and Fy of ¢ are continuously differentiable and hence y’ (= ¢) is
also continuously differentiable. This establishes Du Bois-Reymond’s theorem
which can be easily extended to an integrand of the form F(x, y, Y, iy Y by
“-using the generalization of the above lemma. -
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1.10 ‘m_non_.mmm‘m.._.om__n:_:w of Variations

» @@
AR STV SRy

We have already seen in Section 1.7 that in classical mechanics the dynamical
: laws of motion are represented by a variational principle given by Hamilton’s
5 : principle of least action. In particular, for a dynamical system with S degrees of
; freedom, the possible motion is given by a flow in R/ which makes the functional

W

b
J =1 L(x(t), x(t)) dt

stationary. Here L € C' (R¥ — R) is the Lagrangian of the system, x e C2 ([a, b)

— R’) is the flow and ¥ is the velocity dx/d. In this case, Newton’s dynamical
law follows from the Euler-Lagrange equation

[

R G
(T X T X

»

A

’ d(dL mh|o

di\ ox o

for the functional J.
In quantum mechanics, the dynamical law is given by Schrodinger equation

[

2 0¥ [ Ko, 7
S,ql = i V-V+ V)Y,

sb b

[
Al

where 4 is the Planck constant divided by 27, Yel, (R - C). Here L, is the
Space of square integrable functions in the Lebesgue sense. Motion of this system
is determined by a one-parameter unitary flow in a Hilbert space L,(R - C)

generated by Schrédinger equation.
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Calculus of Variations with Applications

It has been opined that the dy
different from that in classica]

principle analogous to that of 4
(4] derived a weak v rsion of the principle.

a X o s of variations,
Recently, Yasue (5] developed a*theory of stochastic calculus of cwz.w S oS
. i i K : < ] 0 +
which might be re garded as a generalization of the ordinary calculus of vanau
to stochastic processes.

We now giv

S ically
namical law in quantum BR&.&E? is Hwawoaon
mechanics. In particular there is no wwmmdﬁmamﬁ
amilton in quantum mechanics, although Schwing

€, following Yasue, a brief exposition of this- principle. Let
(€2 A, Prybea probability-space - w

here Q is a certain non-empty set, A is a

O-algebra of subsets of O and Pr is a probability measure defined on A. A
MAPPINg x from an open time interval I into a Hilbert space H = L, ((£2, Pr)y >
R is called a stochastic process of second order in R if t — x(f) is continuous
_from I intg _m.z

oWlet P = {p),; and F = (£}, be an increasing family and

a decreasing family of o-algebras, respectively, such that x(1) is p-measurable and
J-measurable,

If

Dx(t) = lim g|¥*H -x(0)

—_— 7

h=0+ h _th
€XISts as a limit in H for eachtinlandt — D x(f) is continuous from I into m
~then the stochastic process is said to be mean forward differentiable. Further, if
- ! 1) -x(t-h

Dux(t) = lim E|XD=x-h

—_—— 2

RS0+ h f,

exists, we say that x(¢) is mean backward differentiable. In the above definitions,

E[- 1 B] denotes the conditional expectation with respect to a O-algebra BcA.,

Further, Dx and D.x are said to be mean forward and backward derivatives
We now denote, by C'(I - H),

the totality of mean forward and backward
differentiable stochastic processes of the second order adapted to P and F. The
completion of C' in the norm

Il xil = sup (Nx(Hlly + I Dx(H)lly + || D« x(NH)\ )
tel
is also denoted by C'(I - H), where || - Il is the norm of 4
Let L € C'(R¥ - R) and we consider functional defined oy (!

(I - H,
b
Jab = E| | L(x(t), Dx(t), Ds x(1)) dt

a

where E denotes the expectation and a,beIwitha<p A functiong) J defined
on CY(I - H) is said to be differentiable at x C'd - By it

Jx +2) - Jix) = dJ(x, 2) + R(x, 7)

Here dJ s a linear functional of z € C'(J — H) and R(x

s =0 UFall
functional dJ on C'(I — H) is called the variation 0

! ). The linear
f the functiong) Jaty e
Ccl(I -» H).
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¢ K it daple d to F and mean Da kward :_?.:.::.“77.,
! ! P and forw ad T;;ﬁ..,.,. A ‘Trm,_J:r —JCr.ﬁ.IJ
' . , . p! id to be [ -adapted
4 Y }  theorem of stochastic calcuius of vanatons
{ ted nven above i1s fitter le at any / .7_.:,7.,_
\ { .‘ 1d (I given DY
[ { Jl
1 o J
i [ { D.| [ (1)
fif) ;\:J_ .‘\f tir)
f ] ,
ol al. oAl

+ E +
A oD, (1)

. unt or an extremal

An L-adapted process Y€ 'l
¢ functional J_, 1f it destroys the differential at v.

We now state the following fundamental theorem A necess
condition, for an L-adapted process to be an extremal of the func
before with fixed end points x(@) = X, and x(b) = v, 15 that 1t satisties

» H s called a statnonary jx
> 1], ()

1.C., d
ary and suthicient

tional J, given

oL (| o . )
d _pl-Z | -D=——|=0 1.61)
() oDx(t) ! dD, x(t) _ ,

as.). where v, and v, belong to H.

almost surely (
theorem we note that since 20a) = 20 =0,

To prove this

!
NN ( N B 1&1 s »:#&J Z.ﬂ

1], = E :.‘ ,
gy VAl ._v\ullﬁ D, (1)

It suffices to show that for a stochastic process of second rder v,

L y(0) () de| =

OV ity = 0 (s Assume v > 0 s torie e (. . Then
by continuity y(r) > ("> 0 (as.)ma neighbourhood of 1 a < —d <1<+ d
. . ST . .

< b, d > 0. But since 2 € C(I = H) s arbitrary, we may choose @ mean square

differentiable process = such that o(n) = 0 (as.) forasrsu-dowtrd<rsb
d d

[as) foru 5 <t <u+ 5. Then

forany

A1) >0 (as) foru—d<t<utd and (1)
b N
(1) - 2() dt 2 Cd >0 (as.) and we geta contradiction. This proves the theorem.

:
l'o give an example, we consider a Markov process x € m._:.ﬂ,::_::?
given by

L(x, Dx, D.x)

Ly(Dx, D,x) = V(x)

, 1
W, WE [ Dxt* 4 ME_UL_N - V()

L

il
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1 i s kinefic and potential
where m is the particle mass and L; and V correspond to the Kietic and |
energy. Here the Euler equation (1.61) becomes

m

5 [PD.x+D.Dx] = - Vy(x)

00 BO®

i ) L CNewton's dvnamical
almost surely, which might be regarded as the generalization of Newton's dynan
law to a stochastic process.

P

. 1.11- Supplementary Remarks

»®

- Yariational Principle for the Equation y”(x) = fix, v, v)

..~ .. Itcanbe shown that an
functional

o
&

Y equation of the above form is a Euler equation for some

‘@

2

@

Y] = | Fx,y,y") dx.

o

¢

This can be established by seeking the functional for which the Euler's equation

Ga

Fy ~ Fye - Fyyy" - Fyy y" =0 .

Ca

, coincides with the above second-order difterential equ

f ation. This means that there
“ ‘~ must be an identity with respect to x, Yy
|

—= 1 T
o

Nﬂv - M,K.x - V\\Q\ Imuv\vx .,\,A\«. Y, ..<\v = 0.

I8 Differentiating this with respect to y', we get

’ ~ —
Nw&xa + N@@Q y+ mww&x f+ h..&._ Jy=0

Seiting u = F.,, we obtain the partial differential equation (PDE)

) -3

] . %+v\m¢w+\%+\%.:no.

Hence finding the functional, that is, finding the function J°

Ak. .f, .v\v. _.GP_CP.».I 1O
the solution of the above PDE, and to subsequent quadratu

re, ;

[ Existence of an Extremum
|
|

We conclude this chapter by pointing out a characteristic difficulty in (he solution
: of variational problems. In problems involving ordinary maxima or minima of
_ function, the existence of a solution is guaranteed by the fundamentg] theorem of
Weirstrass. However variational problems, even if they are meaningfully f. ormulated,
may not have solutions. This stems from the fact that it is not, ip general, possib)e
to choose the domain of admissible functions as a ‘compact set’ {or whicl
principle of point of accumulation holds.

1 the
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Variational Problems with Foved Boundaries V)

For defintteness. let us constder the tunctional

1.
()] (PO 4 OO Ty (1 o))

with the boundary conditions

y(a) = v(M 0 (hoth)
To fix 1deas we also assume an ntegral constraint
h
(.o

,, v =0

We suppose that P(1) and Q(x) are continuous in [a, b with (o)~ 0.1 then

follows from (1.62) that

| b h
1 ] i
! Nyl > Qv dv> min OQ) “dv min O,
! ’ asas b asac b
m a u
i Thus the above functional is bounded below. Now, even if e least value of /]y]
% is not attained, we can construct a sequence of functions ¥,(v) satislying (1.03)
and (1.64) such that lim I[y,(0)] is equal to the greatest lower bound. Such a
n =y :
sequence is known as the minimizing sequence for the functional /.
If a minimizing sequence {Y,(x)} (or its subsequence) is convergent (say,
uniformly convergent) to a limit function Y(x), then the Tunctional attains a
minimum value for y = ¥(x). In fact, we have
/
b b
] Yide= lim | YXx)dv=1
.ﬂ a e a
, b b
s bl . 9}
A Q)Y “(x)dx = lim QUO)Y 5(x) d.
d noe a
But
b b
9, \ .
< Px)Y “(x) dx < lim P(x)Y, () .,
n=)oo

¢ a «

The last result may appear somewhat strange because one may think (hat the left
hand side equals the right hand side. However, there are cases when the right hand
side exceeds the left hand side. Both possibilities are demonstrated in Figs. 1.10(a)

i and 1.10(b).

i Thus we have

Y] < lim 1Y, (x)]

) =Yoo

ol

The sequence {Y,(x)} being a minimizing sequence, we conclude that the quantity
I[Y] is the least value and the existence of a minimum is therefore established.

R Tl T
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Y(x)- '

(b) The minimizing function Y,(x) and limit function Y(x) in the case
when the left side of the above

inequality is Jess than the right side,

Conditions for the existence of a copver
concept of compactness, which plays a vita] rol
A set M of points (elements) of a normeq sp
(R)) is said to be compact in (R), if every infinite sequence
to M has at least one convergent subsequence. Using this not
the Bolzano-Weirstrass theorem as: every bounded set of p
finite-dimensional Euclidean space is compact. But eyer
finite-dimensional Euclidean space js noncompact,

An important feature of infinite-dimensjong) Spaces is that thej, bounded

m:vmmama:oﬁ necessarily compact, and therefore, the 5<mm:mmao: of these
Spaces presents difficulties, For example, the sequence i .

sin 3x, ... is bounded, but noncompact as a subset of ¢
a and b. This is due to the fact that the values of sin .. oscillate
between — 1 and 1 with increasing frequency as n —y o and, therefore, (h
subsequences of this sequence do not converge uniformly, Byy j 1S also Possib]e
(o prove that every minimizing Sequence (Y, } mentione above is nog only bounde.

gent sequence {Y,(¥)} involve the
e in these and many other problemg

—_
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s case, the absence of uniformly
quence of the number

Yl

Cla, b] because, in thi
1d imply that there is a subse

but also compact in the space
nitely and hence the sequence /{

convergent subsequences wou
b
sequence Y/ ? dxp, which increases indefi
a
becomes unbounded as we he existence of a uniformly
n Y(x) renders the

convergent subsequence of the sequence

functional minimum. ‘
An alternative approach to the above problem of exi .
is based on the notion of semi-continuity. A function F(P),
defined in a set of P; in which limits have & meaning, is said to be lower semi-
continuous at Py, if it satisfies the following conditions: (a) F(P)1s extended real-
valued,i.e.; its values are real with'the possible addition of + ¢ ‘m.:amn._.oo, (b) F (Po)
is defined and F(Pg) #— <, () F(Pg) S lim inf F(P) as P — Po. If these conditions
are satisfied for each Pg of the set, we say that F(P) is lower semi-continuous.
Now consider the variational problem for the functional

1. These properties ensure t
Y,, whose limit functio

stence is due to Tonelli

b

nc = .— £ (%), y'(x)) dx
where C is a curve y = y(x) joining two given points a and b. Then it was shown
C belonging to any class K of

by Tonelli that I[C] is lower semi-continuous for
curves of uniformly bounded lengths situated in a cube if fx, y(x), y'(x)) 18
um in K if K is closed.

convex in y'(x). Further 1[C] attains its minim
The link between the proof of existence based on compactness and Tonelli’s
ch lies in the fact that a closed bounded set in a finite-dimensional space
d for a continuous function

ell known Weirstrass principle (vali
s valid for a lower semi-continuous function,

losed set.

approa
is compact and the w
on a closed compact set) remain

defined on a sequentially compact ¢
The general scheme presented above involves most of the basic techniques

for solving variational problems. These schemes reduce to testing that the functional
is bounded below, selecting a minimizing sequence, and proving the compactness
of the sequence in an appropriately chosen function space.

another way of overcoming the difficulty of not having a cenvergent
mum as suggested by

1 space, and

There is yet
g sequence, to ensure the existence of an extre

minimizin
Young [6]. It adapts the idea of L. Schwartz for constructing a dua
embedding the original space (of admissible curves in our variational problem)

into its dual. To fix ideas, consider the problem of minimizing a functional

F(x(@), x’ (6), 1), dt, 1 StS 1, where x(1) varies along a parametrized arc I" of

finite length. In this context F and I"are elements of dual spaces. Let the function
ﬁh& = (F, T') clearly defines a
linear functional in the dual space B*. Defining the operation @ as union of arcs
we have (F, (I ® I)) = (F, ) + (F, I) and (F,cIy=c(F, I'y=(cF, I')for
any real number c. We see that this functional is indeed bilinear and bounded.

F belorig to some normed space B, so that
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1

corresponding variation ) problem may also
be il poscd, 4 the following Crample due tr, Caratheodory he,y-

A variaidna) problem leads 1, the N.c:cc:.:m wiﬁ.hwmaama equation zs the
necessary condition for the CAIe

tence of an extremurr
Y= (] .I:&S

with the boundary conditiong
x(0) = y0) = 0, x(1)= Hiy=1,

It can be shown that the above b

undary valye problem is ny well-posed <o thyt
no differentiab)e solution satisfie

S the above system.

A simple geometrica) Cxample of non-existence of solution can e gi
follows: Ty points of the x-axjs are 1o be joined by the sh
continuous curyatyre which ig perpendicular to the X-ax1s at t
this problem hag 1 solution. In fact, the length of

ive
OIest possible Jine of
he end-points C
such a line i, always gregter
than that of the straight Tine, Joining the twq end points, by ; )

this length ag closely as desired. Hence there exisis greatesy F,\«.n
no minimum for admissible curyes.

We may now sum up the ?SmcSm consideration, 4 L the exis
CxXtremum in a variationg] problem. The Caaracterizgt; of such an extremur.
in the absence of an existence Proof, may turn gy to be 4 ionsense, ag in the
:E:s_.:m example of Oscar Perron. Let Us assume thy, there exj
positive integer ¥, Thus N = n for any positive Integer . [y N>
N*> N. But Nz N? by our hypothesis leads to N*= N Thi

IS a largest
» then clearly

—

. _ s gives v o Although
there is nothing wrong in the proof, the nonsense arises from oy, Ongingl assumption
of the existence of 4 largest positive integer, One may urrive 4

La similar Nonsense
if necessary or sufficient conditiong for the extremum of 4 functiong are derjveg
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without first checking whether such an extremum is attained in the class of admissible
functions. This has a bearing on a basic difficulty arising in the modelling of a
physical phenomenon. The existence of solutions in a rathematical model must
realistically reflect our physical experience.

PROBLEMS
L. Test for an extremum the functional
IO = | oy +v? = 2v2y)dy, y(0) = L y(l) = 2.
0 :
Ans.  An extremum is not achieved on the class of continuous functions.

2. Find the extremals of the functional

ot 3 bt

(1 +y%) i
S gl
.< ]

) =

A\
Ans. v =sinh (Cx + Gy)
3. Find the extremals of the functional

x|

)] = 2xy + v dx.

xQ

7

Ans. y= ﬂ + Cyx3 + Cyx* + Cyx? + Cyx? + Csx + Cg,

-~

Find the Euler-Ostrogradsky equation for the functional

W N W N W + 2uf [ dvdy dz.

Mu(x, v, 7)) =
D

&,

mu:muzmwz
Ans. —— + — + —
DA L.

w RO

= f(x, w2
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