
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

ECONOMETRICS 
 

BASICS OF ECONOMETRICS AND ITS SCOPE. 
 

 Introduction 
 

 WHAT IS ECONOMETRICS? 

Econometrics refers to the application of economic theory and statistical techniques for the 

purpose of testing hypothesis and estimating and forecasting economic phenomenon. Literally 

interpreted, econometrics means “economic measurement.” Although measurement is an 

important part of econometrics, the scope of econometrics is much broader, as can be seen 

from the following quotations: Econometrics, the result of a certain outlook on the role of 

economics, consists of the application of mathematical statistics to economic data to lend 

empirical support to the models constructed by mathematical economics and to obtain 

numerical results. econometrics may be defined as the quantitative analysis of actual economic 

phenomena based on the concurrent development of theory and observation, related by 

appropriate methods of inference. Econometrics may be defined as the social science in which 

the tools of economic theory, mathematics, and statistical inference are applied to the analysis 

economic phenomena. Econometrics is concerned with the empirical determination of 

economic laws. 

 BASIC ECONOMETRICS 

The art of the econometrician consists in finding the set of assumptions that are both 

sufficiently specific and sufficiently realistic to allow him to take the best possible advantage 

of the data available to him. Econometricians are a positive help in trying to dispel the poor 



public image of economics (quantitative or otherwise) as a subject in which empty boxes are 

opened by assuming the existence of can-openers to reveal contents which any ten economists 

will interpret in 11 ways. The method of econometric research aims, essentially, at a 

conjunction of economic theory and actual measurements, using the theory and technique of 

statistical inference as a bridge pier. 

 

 

 Objectives 

1. plications of economic theory need a responsible understanding of economic 

relationships and econometrics method. 

 

2. The econometrics theory thus becomes a very powerful tool for understanding of the 

applied economic relationships and for meaningful research in economics. 

 

3. In this unit we learn basic theory of econometrics and relevant application of the 

method. 

 

 Methodology of Econometrics: 

Broadly speaking, traditional econometric methodology proceeds along the following lines: 

1. Statement of theory or hypothesis. 

2. Specification of the mathematical model of the theory 

3. Specification of the statistical, or econometric, model 

4. Obtaining the data 

5. Estimation of the parameters of the econometric model 

6. Hypothesis testing 

7. Forecasting or prediction 

8. Using the model for control or policy purposes. 

To illustrate the preceding steps, let us consider the well-known Keynesian theory of 

consumption: 

1. Statement of theory or Hypothesis 

 
Keynes postulated that Marginal propensity to consume (MPC), the rate of change of 

consumption for a unit, change in income, is greater than zero but less than one. i.e., 0 < MPC 

< 1 



 
2. Specification of the Mathematical Model of Consumption 

 
Keynes postulated a positive relationship between consumption and income. 

 
 

The slope of the coefficient 𝛽2 measures the MPC. 

 
Keynesian consumption function 

 

Y12x O2 1 
 

Y = Consumption expenditure 

 
X = Income 

1x2 are knows as the parameters of the model and are respective, the interest and slope of 

coefficient. 

 

Shows exact and determined relationship between consumption and income. 

The slope of the coefficient 2, measures the MPC. 

Equation states that consumption is linearly related to income (Example of a mathematical 

model of the relationship between consumption and income that is called consumption 

function in economic). 

Single or one equation is known as single equation model and more than one equation is 

known as multiple equation model. 



3. Specification of the econometric model of consumption. 

 
The inexact relationship between economic variables, the econometrician would modify the 

deterministic consumption function as. 

Y12xU 
 

This equation is an example of the econometric model. More technically, it is an ex. of linear 

regression model. 

This you may be well represent all those factors that affect consumption but are not taken into 

account explicitly. 

The econometric consumption function hypothesizes that the dependent variable Y 

(consumption) is linearly related to the explanatory variable X (Income) but that is the 

relationship between. The two is not exact, it is subject to individual variation. 

 
 

 
 

 

 

 

 

 

  



Q: Why inexact (not exact) relationship exits? 

 
A:   Because in addition to income, other variables affect consumption expenditure. For ex.  

are of family, ages of members of family, religion etc are likely to exert some influence on 

consumption. 

4. Original Data 

To obtain the numerical values of 1&2 we need data. 

{PCE Personal consumption expenditure) 
 

 

Y variable in this table is the aggregate PCE &xis GD a measure of aggregate income. 
 

Note: MPC: Average change in consumption over to change in real income. 

 
5. Estimation of the Econometric Model 

 
The statistical technique of regression analysis is the main tool used to obtain the estimates. 

The estimated consumption function 

Ŷ̂1 ̂2xi 

ŶEstimaotefYThe estimated consumption function (i.e., regress line). 

Regression Analysis is used to obtain estimates. 

6. Hypothesis Testing: 

 
Keynes expected the MPC is positive but less than 1. 

 
Confirmation or refulation of economic theories on the basis of sample evidence is based on a 

branch of statistical theory known as statistical inference (hypothesis testing) 

7. Forecasting or Prediction 



MP 

If the chosen model does refute the hypothesis or theory under consideration, we may use it to 

predict the future value(s) of the dependent, or forecast, variable Y on the basis of known or 

expected future value(s) of the explanatory, or predictor variable X. 

Macroeconomic theory shows, the change in income following change in investment 

expenditure is given by the income multiplier M. 

M
1

1 

The quantitative estimate of MPC provider valuable information for policy purposes knowing 

MPC, one can predict the future course of income, consumption expenditure, and employment 

following a change in the government’s fiscal policies. 

 

8. Use of the Model for control or Policy purpose 

 

 
 

Economic theory 

Mathematical model of theory 

Economic model of theory 

Dates 

 

Estimation of economic model 

Hypothesis testing 

Forecasting or prediction 

Using the model for control or policy purpose 
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 Milton Friedmen has developed a model of consumption theory permanent income 

hypothesis. 

 Robert Hall has developed a model of consumption as life cycle permanent income 

hypothesis 

 

 
 

 Types of Econometrics 
 

Econometrics 

 

Theoretical Applied 

 
 

Classical Bayesian Classical Bayesian 

 
 Theoretical econ is concerned with the development of appropriate methods of 

measuring economic relationship specified by economic models. 

 Applied econ uses the tool of theoretical econ to study some special fields of eco and 

business, such as production function etc. 

 
 SUMMARY AND CONCLUSIONS: 

 

Econometrics is an amalgam of economic theory, mathematical economics, economic 

statistics, and mathematical statistics. Yet the subject deserves to be studied in its own right  

for the following reasons. 

Economic theory makes statements or hypotheses that are mostly qualitative 

in nature. For example, microeconomic theory states that, other things remaining the same, a 

reduction in the price of a commodity is expected to increase the quantity demanded of that 

commodity. Thus, economic theory postulates a negative or inverse relationship between the 

price and quantity demanded of a commodity. But the theory itself does not provide any 

numerical measure of the relationship between the two; that is, it does not tell by how much 



the quantity will go up or down as a result of a certain change in the price of the commodity. It 

is the job of the econometrician to provide such numerical estimates. Stated differently, 

econometrics gives empirical content to most economic theory. 

The main concern of mathematical economics is to express economic theory in mathematical 

form (equations) without regard to measurability or empirical verification of the theory. 

Econometrics, as noted previously, is mainly interested in the empirical verification of 

economic theory. As we shall see, then econometrician often uses the mathematical equations 

proposed by the mathematical economist but puts these equations in such a form that they lend 

themselves to empirical testing. And this conversion of mathematical into econometric 

equations requires a great deal of ingenuity and practical skill. 

 Introduction: 
 

The term regression was introduced by Francis Galton. In a famous paper, Galton found that, 

although there was a tendency for tall parents to have tall children and for short parents to have 

short children, the average height of children born of parents of a given height tended to move 

or “regress” toward the average height in the population as a whole.1 In other words, the 

height of the children of unusually tall or unusually short parents tends to move toward the 

average height of the population. Galton’s law of universal regression was confirmed by his 

friend Karl Pearson, who collected more than a thousand records of heights of members of 

family groups.2 He found that the average height of sons of a group of tall fathers was less 

than their fathers’ height and the average height of sons of a group of short fathers was greater 

than their fathers’ height, thus “regressing” tall and short sons alike toward the average height 

of all men. In the words of Galton, this was “regression to mediocrity.” 

 
 THE MODERN INTERPRETATION OF REGRESSION 

 
 

The modern interpretation of regression is, however, quite different. Broadly speaking, we may 

say Regression analysis is concerned with the study of the dependence of one variable,the 

dependent variable, on one or more other variables, the explanatory variables,with a view to 

estimating and/or predicting the (population) mean or average value of the former in terms of 

the known or fixed (in repeated sampling) 

values of the latter. 

 
 Objectives: 

 



1. The key objective behind regression analysis is the statistical dependence of one variable, 

the dependent variable, on one or more other variables, the explanatory variables. 

 
2. The objective of such analysis is to estimate and/or predict the mean or average value of the 

dependent variable on the basis of the known or fixed values of the explanatory variables. 



3. In practice the success of regression analysis depends on the availability of the appropriate 

data. 

 
4. In any research, the researcher should clearly state the sources of the data used in the 

analysis, their definitions, their methods of collection, and any gaps or omissions in the data as 

well as any revisions in the data. 

 
5. The data used by the researcher are properly gathered and that the computations and analysis 

are correct. 

 

 
 WHAT IS REGRESSION ANALYSIS: 

 

Under single regression model one variable, called the dependent variable is expressed as a 

linear function of one or more other variable, called explanatory variable. 

 TWO VARIABLE REGRESSION MODEL ANALYSIS: 
 

That means a function has only one dependent variable and only one independent variable. 

 
Two variable or bivariate 

 
Means regression in which the dependent variable (the regressand) is related to a single 

explanatory variable (the regression). 

When mean values depend upon conditioning (variable X) is called conditional expected  

value. Regression analysis is largely concerned with estimating and/or predicting the 

(population) mean value of the dependent variable on the basis of the known or fixed values of 

the explanatory variable (s). 



 
 

To understand this, consider the data given in the below table. The data in the table refer to a 

total population of 60 families in a hypothetical community & their weekly income (X) and 

weekly consumption expenditure (Y), both in dollars. The 60 families are divided into 10 

income groups (from $80 to $260) and the weekly expenditures of each family in the various 

groups are as shown in the table. Therefore, we have 10 fixed values of X and the 

corresponding Y values against each of the X values; and hence there are 10 Y subpopulations. 

There is considerable variation in weekly consumption expenditure in each income group, 

which can be seen clearly but the general picture that one gets is that, despite the variability of 

weekly consumption expenditure within each income bracket, on the average, weekly 

consumption expenditure increases as income increases. To see this clearly, in the given table 

we have given the mean, or average, weekly consumption expenditure corresponding to each 

of the 10 levels of income. Thus, corresponding to the weekly income level of $80, the mean 

consumption expenditure is $65, while corresponding to the income level of $200, it is $137. 

In all we have 10 mean values for the 10 subpopulations of Y. We call these mean values 

conditional expected values, as they depend on the given values of the (conditioning) variable 

X. Symbolically, we denote them as E(Y | X), which is read as the expected value of Y given 

the value of X. 



 
 

 

fig.: Conditional distribution of expenditure for various levels of income 

 
 

It is important to distinguish these conditional expected values from the unconditional 

expected value of weekly consumption expenditure, E(Y). If we add the weekly consumption 

expenditures for all the 60 families in the population and divide this number by 60, we get the 

number $121.20 ($7272/60), which is the unconditional mean, or expected, value of weekly 

consumption expenditure, E(Y); it is unconditional in the sense that in arriving at this number 

we have disregarded the income levels of the various families. Obviously, the various 

conditional expected values of Y given in given table are different from the unconditional 

expected value of Y of $121.20. When we ask the question, “What is the expected value of 

weekly consumption expenditure of a family,” we get the answer $121.20 (the unconditional 

mean). But if we ask the question, “What is the expected value of weekly consumption 

expenditure of a family whose monthly income is, differently, if we ask the question, “What is 

the best (mean) prediction of weekly expenditure of families with a weekly income of $140,” 

the answer would be $101. Thus the knowledge of the income level may enable us to better 

predict the mean value of consumption expenditure than if we do not have that knowledge. 

This probably is the essence of regression analysis, as we shall discover throughout this text. 



The dark circled points in figure show the conditional mean values of Y against the various X 

values. If we join these conditional mean values, we obtain what is known as the population 

regression line (PRL), or more generally, the population regression curve. More simply, it is 

the regression of Y on X. The adjective “population” comes from the fact that we are dealing in 

this example with the entire population of 60 families. Of course, in reality a population may 

have many families. 

Geometrically, then, a population regression curve is simply the locus of the conditional means 

of the dependent variable for the fixed values of the explanatory variable(s). More simply, it is 

the curve connecting the means of the subpopulations of Y corresponding to the  given values 

of the regressor X. It can be depicted as in figure. 

 
 

 

 
Fig.: Population Regression line. 

 
This figure shows that for each X (i.e., income level) there is a population of Y values (weekly 

consumption expenditures) that are spread around the (conditional) mean of those Y values. 



For simplicity, we are assuming that these Y values are distributed symmetrically around their 

respective (conditional) mean values. And the regression line (or curve) passes through these 

(conditional) mean values. 

 

 
Concept of Population Regression function (PRF) Or Conditional Expectation function 

(Y/Xi ) f(xi ) 
 

f(Xi ) 

(Y/Xi ) 

: Some function of the explanatory variable X 

 

: Linear function of Xi 
 

(Y/Xi)1 2Xi 

1&2 are unknown but fixed parameters known as the regression coefficients are also known 

as intercept and slope coefficient. 

 

In regression analysis our interest is in estimating the PRFs. 

 

 

 
 ESTIMATION THROUGH OLS 
 

Properties of OLS: 

 
1) Our estimation are expressed solely in term of observatory can be easily complete. 

 
2) They are point estimation. 

 
3) Once OLS estimation is obtained from the sample data. The sample regression line can 

be easily obtained. 

Yi (b0 b1x1ib2x2i)(ui) 
 

Assumptions of Model 



1 

0 

1) Variable u is real random variable. 

 
2) Homoscedasticity 

E(u2)2
 

 

3) Normality of u 

u~N(O,2) 
 

4) Non auto correlation 
 

E(uiuj )u i  j 
 

5) Zero mean of u 

E(ui)0 

6) Independence of ui and Xi. 

E(ui /x1i)E(uiX2i)0 
 

7) No perfect multicollinear X’s 

 
8) No error of measurement in the X’s. 

 

Estimation through OLS 

 

 

 

Yi  Ŷû 

ûi  Yi Ŷi 

ûi Yi ̂1 ̂2Xi 

 
Ŷi  ̂1 ̂2Xi û 

 

 

(Yi ûi  Ŷi ) 

(̂1 ̂2xi ûi ûi  Ŷ) 

(Ŷi  ̂1 ̂2Xi ) 
 

 û2 Y Ŷ 
i i 



i 

2 i 

Sq. them we get variation of deviation 

 

𝑢̂  = (𝑌𝑖 − 𝑌̂𝑖)2 

 

û2 = (𝑌𝑖 − 𝑌̂𝑖)2 

û2 = ∑( Y̂ ̂X)2 
i 

𝛿 û2
 

 
 

i 1 2   i 

 ˆ ˆ 
i 

𝛿𝛽1 
= 2 ∑( Yi 12Xi ) = 0 

 

∑   = ∑(  ̂1 ̂2Xi ) 

∑   = 𝑛 ̂1 ̂2 Xi 

 

 

 
n= sample size 

 

𝛿 û2 

ˆ ˆ  i 
= 2 ∑( Y X)(𝑋 ) = 0 

𝛿𝛽2 i 1 2   i 𝑖 
 

𝑋𝑖 ∑( Yi ̂1̂2Xi ) = 0 

∑ 𝑋𝑖   = 𝑋𝑖 ∑(  ̂1 ̂2Xi ) 
 

∑ 𝑋𝑖 𝑌𝑖 = ̂1Xi ̂ X2
 

 

Note:- We are not taking n 2 because one variable X1 is already percent. So no need for n, 

co2 they are one & the same. 

 

(LRM) = Classical linear regression Modes) Normal equation  is dependent upon X. X is 

independent.) 

 

Q. Find the value of 
 

̂ ̂1 ̂2Xi 

̂1 &̂2 

 (1) 



i 

  
2X 

i  n̂1 ̂2 Xi  (2) 
 

Xii  ̂1Xi ̂2 X2 (3) 

Dividing equator (2) by n 

i 
= 

𝑛 

n̂1 
+ 

𝑛 

̂2 Xi 
 

 

𝑛 

 

𝑌̅= ̂1 ̂2 X 
 

 

 

 

 

 

 

 

 

̂1 ̂2 X𝑌̅ 

 
Now after further simplification we get the value of 

 

̂2 = 
  ∑ 𝒙𝒚  

i 

 
̂2 as 

 

 

 

 

 
 

 SUMMARY AND CONCLUSIONS: 
 

 

1. The key concept underlying regression analysis is the concept of the conditional 

expectation function (CEF), or population regression function (PRF). Our objective in 

regression analysis is to find out how the average value of the dependent variable (or 

regressand) varies with the given value of the explanatory variable (or regressor). 



2. This lesson largely deals with linear PRFs, that is, regressions that are linear in the 

parameters. They may or may not be linear in the regressand or the regressors. 

 
3. For empirical purposes, it is the stochastic PRF that matters. The stochastic disturbance 

term ui plays a critical role in estimating the PRF. 

 
4. The PRF is an idealized concept, since in practice one rarely has access to the entire 

population of interest. Usually, one has a sample of observations from the population. 

Therefore, one uses the stochastic sample regression function (SRF) to estimate the PRF. 

II 
 Introduction: 

 

To estimate the population regression function (PRF) on the basis of the sample regression 

function (SRF) as accurately as possible, we will discuss two generally used methods of 

estimation: 

(1) Ordinary least squares (OLS) and 

(2) Maximum likelihood (ML). 

By and large, it is the method of OLS that is used extensively in regression analysis primarily 

because it is intuitively appealing and mathematically much simpler than the method of 

maximum likelihood. Besides, as we will show later, in the linear regression context the two 

methods generally give similar results. 

 Objectives: 
 

1. The key objective is to find the the least-squares estimators, in the class of unbiased linear 

estimators, have minimum variance, that is, they are BLUE. 

 
2. The goodness of fit of the fitted regression line to a set of data; that is, we shall find out 

how “well” the sample regression line fits the data . 

 Gauss-Markov Theorem/Blue: 
 

The least-squares estimates possess some ideal or optimum properties, 

these properties are contained in the well-known Gauss–Markov 

theorem. To understand this theorem, we need to consider the best linear 

unbiasedness property of an estimator. 

BLUE: - Best Linear-Unbiased Estimator. 



2 

 
MVUE: - Minimum Variance unbiased Estimator. 

 
- If in BLUE, L is not there, because Linearity in co-effects are required not in X &Y. 

The properties if Least-Square are known as the BLUE. 

 Properties 

1. It is linear i.e. a linear function of a random variable such as the dependent variable Y 

in the regression model. 

 

2. It is unbiased i.e its average value, E(̂2), is = true value of 2. 

 

3. Has minimum variance in class of all linear unbiased estimators. 

 
(Note:- An unbiased estimator with the least variance is known as an efficient variable.) 

 
Gauss Theorm:- Give the assumption of the classical linear regression Model the least 

squares estimators; in the class of unbiased linear estimator have minimum variance, that is 

they are BLUE. 

 

a) The mean of the 

estimator. 

̂2values. EC(̂2)is equal to the true value of 2. ̂2is an unbiased 

 
 

 

 

b) 

 
 Sample distribution of

 
2, an alternative estimator of 2. 

 ̂2&  *
. are linear estimators that is they are linear function of Y.

 𝛽2
* like 𝛽2 is unbiased that is, its average or expected value is equal to 𝛽2.



2 

 

 
 

 

c) The variance of 

estimator 

*
is larger than the variance of ̂2.One  would  choose  the  BLUE 

 

 

 

G.M. Theorem makes no assumption about the probability distribution of the random variable 

ui and therefore of Yi. 

 As long as the assumption of CLRM are satisfied, the theorem holds. 

 If any of the assumption doesn't hold, the theoram is invalid. 

 
 Derivation of R2

 

 

Coefficient of determination ( r2 ). 

 
A measure of "Goodness of fit" 

 
 Goodness to fit of the fitted regression line fits the data; that is we shall find out how 

will the sample regression line fits the data. 

 The coefficient of determination r2 (Two variable case) or R2 (multiple regression) is a 

sum many measure that tells how will the sample regression line fits the data. 



 

X 

 
Y= X 

% 100 of 

variation in Y 

is explanatory 

by X) 

i 

 

 

 

 

(a) (b) 

r2 = 0 r2 = 1 

Y = Dependent variable 

X= Explanatory variable 

Greater the extent of the overlap, the greater the variance in Y is explained by X. r2 simply a 

numerical measure of this overlap. 

r2 computation 

Yi ̂1 û, 

 

in the derivation form 

yi  ŷ1 û 
 

Squaring both side. 
 

y2 (ŷ,û)2
 

 

ŷû 0 
y2 (ŷ2 û2 2ŷ,û) 

i   i  

ˆ 
i i i  ̂ X û 

   

ŷi  2Xi 

2 2 2 2 i 
 

TSS = ESS + RSS 

 
Where a) TSS = Total sum of squares. 

 

i.e. Ey2 = (Yi - ̅Y)2
 

 

 

 
i.e. 

b) ESS =Estimated sum of squares. 

EŶ2 E(Ŷ Ŷ)2 E(ŷy )2 
=  ̂2 X2

 

1 i  2 i 

 

c) RSS= Residual sum of squares. 

y 

 

Y 



1 

1 

1 

1 



i.e. Eû2
 

 

Dividing between by TSS 
TSS 

= 
ESS 

+ 
𝑅𝑆𝑆

 
TSS TSS 𝑇𝑆𝑆 

 
 

 

(Ŷ1 Y)2
 

(Yi                   Y)2
 

(Ŷi Y)2
 

(Yi                   Y)2
 

û2
 

(Yi Y)2
 

ûi 

(Yi Y)2
 


r2 (Ŷi Y)2 



 (Yi Y)2 


1 - r2 = 
RSS

 
TSS 

 

r2  = 1 - 
RSS

 
TSS 

 

r2 thus defined is known as the (sample) coefficient of determination and is the most 

commonly used measure of goodness of fit. 



 

 
 

 

 
 

r2 measure the proportion or % of the two variable in Y explained by regression model. 

 
 Two properties of r2

 

 

1. It is a non negative quantity. 

 
2. Its limits are 0  r2  1. 

 
An r2 1 means a perfect fit r2 of 0 means no relation. 

 
A quantity closely related to but conceptually very much different from r 2 is the coefficient of 

correlation, is a measure of the degree of association between two variables. It can be 

computed from 

r = ±√r 2 

 

 

Some of the properties of r are as follows: 



1. It can be positive or negative, the sign depending on the sign of the term in the numerator of, 

which measures the sample covariation of two variables. 

 
2. It lies between the limits of −1 and +1; that is, −1 ≤ r ≤ 1. 

 
 

3. It is symmetrical in nature; that is, the coefficient of correlation between 

X and Y(rXY) is the same as that between Y and X(rYX). 

 
 

4. It is independent of the origin and scale; that is, if we define X*i=aXi + C andY*i= bYi + d, 

where a > 0, b > 0, and c and d are constants, then r between X* and Y* is the same as that 

between the original variablesX and Y. 

 
5. If X and Y are statistically independent the correlation coefficient between them is zero; but 

if r = 0, it does not mean that two variables are independent. In other words, zero correlation 

does not necessarily imply independence. 

 
6. It is a measure of linear association or linear dependence only; it has no meaning for 

describing nonlinear relations. 

 
 SUMMARY AND CONCLUSIONS: 

 

The important topics and concepts developed in this lesson can be summarized as follows. 

 
 

1. Based on these assumptions, the least-squares estimators take on certain properties 

summarized in the Gauss–Markov theorem, which states that in the class of linear unbiased 

estimators, the least-squares estimators have minimum variance. In short, they are BLUE. 

 
2. The precision of OLS estimators is measured by their standard errors. 



3. The overall goodness of fit of the regression model is measured by the coefficient of 

determination, r 2. It tells what proportion of the variation in the dependent variable, or 

regressand, is explained by the explanatory variable, or regressor. This r 2 lies between 0 and 

1; the closer it is to 1, the better is the fit. 

 
4. A concept related to the coefficient of determination is the coefficient of correlation, r. It is a 

measure of linear association between two variables and it lies between −1 and +1. 

 

 

III 

 
INTRODUCTION: 
 

If our objective is to estimate β1 and β2 only, the method of OLS will be suffice. But in 

regression analysis our objective is not only to obtain ˆ β1 and ˆ β2 but also to draw inferences 

about the true β1 and β2. For example, we would like to know how close ˆ β1 and ˆ β2 are to 

their counterparts in the population or how close ˆYi is to the true E(Y | Xi). To that end, we 

must not only specify the functional form of the model, but also make certain assumptions 

about the manner in which Yi are generated. To see why this requirement is needed, look at the 

PRF: Yi = β1 + β2Xi + ui . It shows that Yi depends on both Xi and ui . Therefore, unless we 

are specific about how Xi and ui are created or generated, there is no way we can make any 

statistical inference In this lesson, we will study about the various methods through which the 

regression models draw inferences about the various parameters. Basically, there are three 

methods through which we do this:- 

 
1. The classical linear regression model (CLRM). 

 
2. Generalized least square (GLS). 

 
3. Maximum Likelihood estimation (ML) 

 
 OBJECTIVES: 

 

1. In regression analysis our objective is not only to obtain βˆ1 and βˆ2 but also to draw 

inferences about the true β1 and β2. For example, we would like to know how close βˆ1 and βˆ2 

are to their counterparts in the population or how close Yˆi is to the true E(Y | Xi). 

2. Look at the PRF: Yi = β1 + β2Xi + ui . It shows that Yi depends on both Xi and ui . The 



assumptions made about the Xi variable(s) and the error term are extremely critical to the valid 

interpretation of the regression estimates. 

 
3. Our objective is to first discuss the assumptions in the context of the two-variable regression 

model,we extend them to multiple regression models, that is, models in which there is more 

than one regressor. 



 

 

 THE CLASSICAL LINEAR REGRESSION MODEL: 
 

The assumptions underlying the method of least squares 

 
The Gaussian, standard, or classical linear regression model (CLRM), which is the 

cornerstone of most econometric theory, makes 10 assumption. 

Assumption 1: Linear regression model. The regression model is linear in the 

parameters, 

i = 1 + 2Xi + ui 

 
Assumption 2: X values are fixed in repeated sampling. Values taken by the 

regressor X are considered fixed in repeated samples. More technically, X is assumed 

to be nonstochastic. 

Assumption 3: Zero mean value of disturbance ui. Given the value of X, the mean, 

or expected, value of the random disturbance term ui is zero. Technically, the 

conditional mean value of ui, is zero. Symbolically, we have 

E(ui |Xi)= 0 

 
Assumption 4: Homoscedasticity or equal variance of ui. Given the value of X, the 

variance of ui is the same for all observations. That is the conditional variance of ui, are 

identical. Symbolically, we have 

var (ui |Xi) = E(ui |Xi)2
 

 

= E(u
2 

|Xi) because of Assumption 3 
𝑖 

 

= 2
 



Where var stands for variance 

 
Assumption 5: No autocorrelation between the disturbances. Given any two X 

values, Xi and Xj (ij) the correlation between any two ui and uj (ij) is zero. 

Symbolically 

Cov (ui ui |Xi,Xj) = E{[ui - E(uj)]| Xi} {[ui - E(uj)]| Xi) 

 
= E(ui |Xi) (uj |Xj) 

 
= 0 

 
Where i and j are two different observation and where cov means covariance. 

 
Assumption 6: Zero covariance between ui and Xi or E(uiXi) =0 Formally, 

Cov (ui Xi) = E[ui - E(uj)][Xi - E(xI)] 

= E[ui (Xi - E(Xi))] Since E(ui) = 0 

 
= E[uiXi) - E(Xi) E(ui) Since E(Xi) is nonstochastic 

 
= E[uiXi) Since E(ui) =0 

 
= 0 by assumption 

 
Assumption 7: The number of observation n must be greater than the number of 

parameters to be estimated. Alternatively, the number of observation n must be 

greater than the number of explanatory variables. 

Assumption 8: Variability in X values. The X values in a given sample and not all be 

the same. Technically, var (X) must be a finite positive number. 
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Assumption 9: The regression model is correctly model in correctly specified. 

Alternatively, there is no specification bias or error in the model used in empirical 

analysis. 

Assumption 10: There is no perfect multicolinearity. That is, there are no perfect 

linear relationships among the explanatory variable. 

 

 

 GENERALISED LEAST SQUARE (GLS) 
 

OLS method doesn't follow this strategy & therefore doesn't make use of the information 

contained in the unequal variability of the dependent variable Y. 

But GLS takes such information into accent explicitly & is therefore capable of producing 

estimators that are BLUE. 

Yi 1 2Xi u  (1) 

 

Which for case of algebraic manipulation 

Yi i Xoi 2Xi ui 

 

 
 (2) X0i=1 

 

Yi    Xoi Xi ui  
   

  (3) for each i 

i 
1 i  

 
2
i  

i 




Y* *X* *X* u*
  (4) 

i 1 oi 2   i i 

 

{Where transformed, variable are that are divided by i}. We use the notation. 

 
2 heteroscedastic variable 

 
What is the purpose of transforming the original mode? 

Notice the following feature of the transformed error term u*
 







u* (u*)2 
(uo)

2

 
 Var (  i i 1

 
 

=
 1 (u2)  

{2 is known) 
2 1 
1 

 

=
 1 (2) (1

2)= 2
 

2 1 1 
1 

 

This procedure of transforming original variable in such a way that the transformed 

variable satisfy the assumption of the classical model & then apply OLS to then is 

known as the method of GLS. 

In short GLS is OLS on the transformed variables that satisfy the standard last sq. 

assumption. 

 

 

 

 

 Maximum Likelihood estimation (ML) 
 

Assumption 2 variable modes 

 
1    =    1+    1Xi    u1 

f(Y1Y2 .............. Yn/ 1+ 2Xi +2) 

= f(Y1 / 1+ 2Xi +2) f(Y2 / 1+ 2Xi +2)……..f (Yn / 1+ 2)  (1) 
 

When f(Y )= 1 exp {− 
1  (𝑌𝑖−𝛽1−𝛽1𝑋𝑖)

2
}  (2) 

 
  

1 
𝜎√2𝜋 2 𝜎2 

 

Exp mean e to the paru of expression indicator by { } 

Y1 are normal 
distributer 



2 

 1 (𝑌𝑖−𝛽1+ 𝛽2𝑋𝑖)2 
f (Y1) = 1 

𝜎√2𝜋 
𝑒− 

2
 𝜎2 

 

Subtract (2) in (1) 

f(Y1,Y2,Yn / 1+ 2X1 

 

 
+2) = 1 

𝜎√2𝜋 

 
 
exp {− 

1 
(

𝑌𝑖−𝛽1−𝛽1𝑋𝑖) } 
2 𝜎2 

 

 
 (3) 

Y1, Y2, Yn are known 

 
But 1 2 & 2 are not. 

 
f so (3) is known as likelihood function. 

Divided by LF (1,2, 2) 

LF (   ,  ) = 1 𝑒 {− 
1 
 (

𝑌𝑖−𝛽1−𝛽1𝑋𝑖 
 

  

1,   2 2  

𝜎√2𝜋 2 𝜎2 ) } 

 

ML consists in estimating the unknown parameter in such a manner that the probability 

of observe give by Y’s is highest as possible. 

 

In LF= -n ln-𝑛 ln(2) − 
1 
 (𝑌1−𝛽1+𝛽2𝑋𝑖)

2

  (5) 
2 2 𝜎2 

 

Differencing (5) parameters with 1,2 & 2 
 

𝜕𝑚𝐿𝐹 
= 

1  (Y1 - 1 - 2 Xi) (-1)  (6) 
𝜕𝛽1 𝜎2 

 

𝜕𝐿𝑛𝐿𝐹 
= 

1  (Y1 - 1 - 2 Xi) (-X1)  (7) 
𝜕𝛽2 𝜎2 

 

𝜕𝐿𝑛  
= − 

𝑛 
+ 

1 (Y1 - 1 - 2 Xi)2  (8) 
𝜕2 𝜎 2𝜎4 

2 
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IV 

INTRODUCTION: 
 

The classical linear regression model is that the disturbances ui appearing in the population 

regression function are homoscedastic; that is, they all have the same variance. In this lesson 

we examine the validity of this assumption and find out what happens if this assumption is not 

fulfilled. We seek answers to the following questions: 

 
1. What is the nature of heteroscedasticity? 

2. What are its consequences? 

3. How does one detect it? 

4. What are the remedial measures? 

 
 OBJECTIVES: 

 

1. Understand the meaning of heteroskedasticity and homoskedasticity through examples. 

 
2. Understand the consequences of heteroskedasticity on OLS estimates. 

 
3. Detect heteroskedasticity through graph inspection. 

 
4. Detect heteroskedasticity through formal econometric tests. 

 
5. Distinguish among the wide range of available tests for detecting heteroskedasticity. 

 

 

 
 HETEROSCEDASTICITY 

 

Where the conditional variance of the Y population varies with X. This situation in known 

appropriately as heteroscedasticity or unequal spread or variance. 

Eu22
 



i 

  
 

 

 

 
 

 

Nature of Heteroscedasticity 

2. It’s an error learning model, as people learn, their error of behavoiur become 

smaller over time. 

3. As income grow, people have more discretionary income & hence more scope for 

choice about the disposition of their income. 

4. As data collecting techniques increases 2 is likely to decrease. 

5. If can also arise as a result of the presence of collinear. 

6. It is skewness in the distribution of one or more regressions included in the model. 

7. Incorrect data transformation. 

8. Incorrect functional form. 

arrange  save more 

than the lower 

income family, but 

there is more 

variability   in  their 

savings 

the on 

income Higher 

families 



i 

i 

i 

i 

i 
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1.3.1.1 OLS Estimation in the Presence of Heteroscedasticity 

Eu22
 

 

 Yi = 1+ 2Xi + ui 

 
Applying the usual formula the OLS estimator is 2 is 

 

2 = 
xiyi 

x2
 

 
=

 nxiyi − 
xiyi  

nXi (Xi)2 

2 

   Var̂2 
i 

x2
 

 

   Var2  
ne2

 

2 (x2)2
 

2 

   Va(r̂2)
i 

x2
 

 

 

 

 

DETECTION OR TEST 
 

1.3.2.1 Informal Methods 

 
1. Nature of Problem: - Very often nature of the problem under consideration 

suggests whether heteroscedasticity is likely to be encountered. 

2. Graphical Problem: - If there is no empirical information about the nature of 

heteroscedasticity, in practice one can do the regression analysis on the 

assumption that there is no heteroscedasticity & then do a postmortem 



  X 1 2 i 
2 

i examination of the residual squared 

pattern. 

û2to  see  if  they  exhibit  any  systematic 

1.3.3.2 Formal Methods 

 
1. Park Test: - Park formalized the graphical method by suggesting that 

same function of the explanatory variable Xi. 

His suggested function was 

2 2Xevi 

 
 

2 is 

i i 

or 
ln2  ln2  lnX V 

i i i 
 

Since 2   is generally not known.  Park suggested  using ûi ,  as a proxy & 

running following regression. 
 

lnû2 ln2 lnX V 
i i i 

lnXi Vi 

 

- If  turn out to be statistically significant, it would suggest that 

heteroscedasticity is present in the data. 

- Park test is two stage procedure 

a) We run the OLS regression disregarding the heteroscedasticity question. 

b) Run the regression. 

 
2. Glejser Test: - It is as Park test. He suggests regressing the absolute values of 

û1on the X variable. 
 

ûi   Vi 

 

3. Spearman's Rank Correlation Test:- 





i 

i 



 2 

𝑖 

𝑖 

1 

r 16

 d2 

i s n(n 1) 
  



di = difference in the rank 

n= no. of individual. 

4. GoldFeld Quandt Test: - One of the popular methods, in which of one assumes 

that the heteroscedasticity variance 2 is positively related to one of the 

explanatory valuables in the regression model. 

Yi 1 2Xi ui 

 

Suppose 2 is positively related to Xi 
 

2  = 2 X2 
𝑖 𝑖 

 

5. Breusch Pagan Godfrey Test (BPG Test):- 

Yi  0 i X1 2X2 3X3  ........ ..k.Xk ui 

2  f( z  z  z ...... ....  z 
i 0 1 1 2  2 3 3 m m 
2  z  z  ....... .. z 

i 0 1 1 2  2 m m 

 

 
0 1 2  ........... ..m 0 

(Linear functions) 

 

{No heteroscedasticity, no relation between two} 

 
Run the regression 

û2  0 1z12z2  ........... ..mzm 

θ = 1 ESS 
2 



2 

2 

2 

2 

2 

𝑖 

6. White Test: - (Most logical for all) 

Yi 0 1X1 2X2 u2 

 

 
 

Error may be related between X1 & X2. 

û2  0 1X1 2X2  X2  X2 5X1X2 vi 

1 3   1 4 2 

of o 1 2  ........ ..n..0 
 

(No heteroscedasticity) 

 

White test can be a test of heteroscedasticity or specification error or both. 

 

 
 

CONSEQUENCES OF USING OLS IN THE PRESENCE OF 

HETEROSCEDASTICITY 

As we have seen, both ̂* and ̂2
 are (linear) unbiased estimators: In repeated 

sampling, on the average, ̂* and ̂2
 will equal the true 2; that is, they are both 

unbiased estimators. But we know that it is ̂*  that is efficient that is, has the smallest 

variance. What happens to our confidence interval, hypotheses testing, and other 

procedures if we continue to use the OLS estimator ̂* ? We distinguish two cases. 

 OLS Estimation allowing for heteroscedasticity 
 

* 
2


2 
  Suppose  we use  ̂        and  use the variance formula  given  in  var  ( ̂     ) =  1   1 , which 

2 2 (
2 

𝑥1) 

takes into account heteroscedasticity explicitly. Using this variance, and assuming 2
 

are known, can we establish confidence intervals and test hypotheses with the usual t 

and F test? The answer generally is no because it can be shown that var( ̂*) < var( ̂*
 

2 2 

x 



1 

i 

i 

),5 which means that confidence intervals based on the latter will be unnecessarily 

larger. As a result, the t and F test are likely to give us inaccurate results in that var ( ̂2 

)is overly large and what appears to be a statistically insignificant coefficient (because 

the t value is smaller than what is appropriate) may in fact be significant if the correct 

confidence intervals were established on the basis of the GLS procedure. 

 

 OLS Estimation disregarding heteroscedasticity 
 

The  situation  can  become  serious  if  we  not  only use ̂2 

 

 

but also continue to use the 

usual (Homoscedasticity) variance formula given in var ( ̂    )= 
2

 even if 
2 𝑥2 

heteroscedasticity is present or suspected: Note that this is the more likely case of the 

two we discuss here running in standard OLS regression package and ignoring )or 

being ignorant (or being ignorant of) heteroscedasticity will yield variance of ̂2. First 

of all car ( ̂2)is a biased estimator of var ( ̂2) that is, on the average it over estimates 

or underestimates the latter, and in general we cannot tell whether the bias is positive 

(overestimation) or negative (underestimation) because it depends on the nature of the 

relationship between 2and the values taken by the explanatory variable X,. The bias 

arise from the fact that ̂2
, the conventional estimator of  ̂2

, namely  û2(n-2) is no 
 

longer an unbiased estimator of the latter when heteroscedasticity in present . As a 

result, we can no longer rely on the conventionally computed confidence intervals and 

the conventionally employed t and F tests. In short, if we persist in using the usual 

testing procedures despite heteroscedasticity, whatever conclusions we draw or 

inferences we make may be very misleading. 

To throw more light on this topic, we refer to a Monte Carlo study conducted by 

Davidson and MacKonnon. They consider the following simple model, which in our 

notation is 



i 

i 

i 

i 

i 

i 

Yi= 1 + 2Xi + ui 

 
They assume that 1 = 1, 2 = 1, and ui N(0, 

 
X). 

 

From the preceding discussion it is clear that heteroscedasticity is potentially a serious 

problem and the researcher needs to know whether it is present in a given situation. If 

its presence is detected, then one can take corrective action, such as using the weighted 

least-squares regression or some other technique. Before we turn to examining the 

various corrective procedures, however, we must first find out whether the various 

corrective procedures, however, we must first find out whether heteroscedasticity is 

present or likely to be present in a given case. 

 

 

 REMEDIAL MEASURES 
 

When 2 is known: The method of weighted least squares 
 

As we have seen, if 
2 

is known, the most straight forward method of correcting 
 

heteroscedasticity is by means of weighted least squares, for the estimators thus 

obtained are BLUE. 

When 

 
If true 

2 is not known 

2 are known, we can use the WLS method to obtain BLUE estimators. Since 

the true 2 are rarely known, is there a way of obtaining consistent (in the statistical 

sense) estimates of the variances and co-variances of OLS estimators even if there is 

heteroscedasticity? The answer is yes. 

White’s Heteroscedasticity-Consistent Variances and Standard Errors. White has 

shown that this estimate can be performed so that asymptotically valid (i.e., large- 





sample) statistical inferences can be made about the true parameter values. We will not 

present the mathematical details, for they are beyond the scope of this book. Nowadays, 

several computer package present White’s heteroscedasticity-corrected variances and 

standard errors along with the usual OLS variances and standard errors. Incidentally, 

White’s heteroscedasticity corrected standard errors are also known as robust standard 

errors. 

 

 

 IV 

  

 INTRODUCTION: 
 

There are generally three types of data that are available for empirical analysis: (1) cross 

section, (2) time series, and (3) combination of cross section and time series, also known as 

pooled data. In developing the classical linear regression model (CLRM) we made several 

assumptions. However, we noted that not all these assumptions would hold in every type of 

data. As a matter of fact, we saw in the previous lesson that the assumption of 

homoscedasticity, or equal error variance, may not be always tenable in cross-sectional data. In 

other words, cross-sectional data are often plagued by the problem of heteroscedasticity. 

However, in cross-section studies, data are often collected on the basis of a random sample of 

cross-sectional units, such as households (in a consumption 

function analysis) or firms (in an investment study analysis) so that there is no prior reason to 

believe that the error term pertaining to one household or a firm is correlated with the error 

term of another household or firm. If by chance such a correlation is observed in cross- 

sectional units, it is called spatial autocorrelation, that is, correlation in space rather than over 

time. However, it is important to remember that, in cross-sectional analysis, the ordering of the 

data must have some logic, or economic interest, to make sense of any determination of 

whether (spatial) autocorrelation is present or not. The situation, however, is likely to be very 

different if we are dealing with time series data, for the observations in such data follow a 

natural ordering over time so that successive observations are likely to exhibit 

intercorrelations, especially if the time interval between successive observations is short, such 

as a day, a week, or a month rather than a year. If you observe stock price indexes, such as the 

Dow Jones or S&P 500 over successive days, it is not unusual to find that these indexes move 

up or down for several days in succession. Obviously, in situations like this, the assumption of 

no auto, or serial, correlation in the error terms that underlies the CLRM will be violated. 



 

 

 

 
In this lesson we take a critical look at this assumption with a view to answering the following 

questions: 



1. What is the nature of autocorrelation? 

2. What are the theoretical and practical consequences of autocorrelation? 

3. Since the assumption of no autocorrelation relates to the unobservable disturbances ut, how 

does one know that there is autocorrelation in any given situation? Notice that we now use the 

subscript t to emphasize that we are dealing with time series data. 

4. How does one remedy the problem of autocorrelation? 

 

 

 OBJECTIVES: 
 

1. Understand the meaning of autocorrelation. 

 
2. Understand the consequences of autocorrelation on OLS estimates. 

 
3. Detect autocorrelation through graph inspection. 

 
4. Detect autocorrelation through formal econometric tests. 

 
5. Distinguish among the wide range of available tests for detecting autocorrelation.. 

 

 

 

 WHAT IS AUTOCORRELATION 
 

Correlation between members of series of observation ordered in time (as in time series data) 

or space as in cross-sectional data) 

Auto doesn't exist in the disturbance u1) 

 
(ui uj) = 0 ij 

 

 
 

 NATURE OF AUTOCORRELATION: 



i 

1. Inertia: - Silent feature of most of the time series is inertia or sluggishness. Well 

known, time series such as GNI price Index. 

2. Specification Bias: Excluded variable case: - Residuals (which are proxies of ui) may 

suggest that same variable that were originally candidates but were not included in the 

model for a variety of reasons should be included. 

Yi = 1 + 2X2t + 3X3t + 4 X4t + ui 

Y = Quantity of beef demanded. 

X2 = Price of beef 

 
X3 = Consumer income 

X4 = Price of Pork 

t = Time 

 
AFTER REGRESSION:- 

 
Yt = 1 + 2X2t + 3X3t + 4 X4t + Vt 

 
 

3. Specification Bias: Incorrect functional form:- 
 

Marginal Costt = 1 + 2 output + 3output2 + ui 

But we get the following model. 

MCt = 1+ 2 outputt + Vi 



 

  
 
 
 

 

4. Cobweb Phenomenon: - The supply of many agricultural commodities reflects 

the so called cobweb Phenomenon. Where supply reacts to price with a lag of 

one time period because supply decisions takes time implement. 

Supplyt = 1 + 2 Pt-1 + ut 

 
5. Lag: - 

 

Consumption: - 1 + 2 Income + 2 Consumptiont-1+ ut 

 
6. Manipulation of data: - In empirical analysis the raw data are often 

manipulated. 

7. Data Transformation:- 
 

Yt = 1 + 2Xt + ut  1 

Y = Consumption, X = Income 

MC curve 

corresponding to 

the 'true' model is 

along with the 

"incorrect" linear 

cost curve. 



Y(t-1) = 1 + 2X(t-1) + u(t-1)  2 Previous Period 

Y(t-1), X(t-1), u(t-1) are lagged values of X1 Y & U 

Sub. (II) from (I) we get 

 
Yt = 2 Xt + ut   first difference operator 

 

 

FOR EMPIRICAL PURPOSE 

 

Yt  = 2Xt + Vt  Vt = ut = (ut - ut-1) 

 

 

TEST OF AUTOCORRELATION: 

 
Graphical Method:- 

 

 Plot any of error 

 Error term & there exists non-stationary 

 

Stationary 

Yt = ρYt-1 + ut 

Yt = Yt-1 + ut (ρ=1) 

Yt - Yt-1 = ut 

 
Now assume there is lag operation (L) 

(Lyt = Yt-1) 

Yt - LYt = Ut 

yt (1-L) = Ut 



if (1-L) = 0 

L = 1 

This is known as unit root. 

 
(When root is unit autocorrelation is there) (Non stationary & unit rest is same) 

There are various ways of examine the residuals (error) 

 

 
a) Time sequence plot 

 

 

 

 



b) Standardized residual 
 

 

 

 

 

 

 
The Runs Test:- 

 

Initially, we have several residuals that are negative, then there is a series of positive residuals, 

and then there are several residuals that are negative. If these residuals were purely random, 

could we observe such a pattern? Intuitively, it seems unlikely. This intuition can be checked 

by the so-called runs test, sometimes also know as the Geary test, a nonparametric test. 

(---------)(++++++++++++++++++++)(--------------) 

 
This is also a crude method. 

 
We now define a run as an uninterrupted sequence of one symbol or attribute, such as + or -. 

We further define the length of a run as the number of elements in it. 



t t 

Durbin Watson test:- 
 

 Also known as Durbin Watson d Test. 

 
  One of the good methods as the d statistic is based on the estimated residuals, which 

are computed in regression analysis 

(ût ût1)2
 

(ût )2
 

This tells where there exists autocorrelation or not 
 

ût
2 

û2   

2û û  
 

ût
2

 
t1 

û2
 

t 

û2
 

t1 

 
 1 + 1 (by nearly) - 

2ût ût1 

ût 
 

 

 2 (1 - 
ût ût1 

ût 
 

d  2(1̂ 
 

2 (1- (-1) = 4 

 

2 (1 - (1) = 0 
 

d will be 0  d  4 

because ρ = -1  ρ  1 

 d  2  no autocorrelation 
 

 d  0 or 4 (closer) there is autocorrelation 

d





i 

n2 

 CONSEQUENCES OF AUTOCORRELATION: 
 

 OLS Estimation allowing for Autocorrelation. 
 

 

 

 

 

 
 

 

To establish confidence interval to test hypotheses, one should be GLS & not OLS even 

though the estimators derived from the latter are unbiased & consistent. 

 

 

Estimation Disregarding Autocorrelation. 
 

ˆ2 û2
 

   
(n 

i
 

 
Unbiased estimate of 2 i.e 

2) 

(̂2)2
 

 

(̂2 
2{n[2/(1]}2r 



 

 

 REMEDIAL MEASURES OF AUTOCORRELATION: 

 
1. Try to find out if the autocorrelation is pure autocorrelation or not because of the 

result of the mis-specification of the model. 

2. Transformation of original model, so that in the transformed model we do not 

have the problem of (Pure) autocorrelation. 

3. In case of large sample we can Newey-West method to obtain standard error of 

OLS estimators that are corrected for auto correlation. 

4. In some situation we can continue to use the OLS method. 

 

 

 
 SUMMARY AND CONCLUSIONS: 

 

1. If the assumption of the classical linear regression model—that the errors or disturbances ut 

entering into the population regression function (PRF) are random or uncorrelated—is  

violated, the problem of serial or autocorrelation arises. 

 
2. Autocorrelation can arise for several reasons, such as inertia or sluggishness of economic 

time series, specification bias resulting from excluding important variables from the model or 

using incorrect functional form, the cobweb phenomenon, data massaging, and data 

transformation. 

 
3. Although in the presence of autocorrelation the OLS estimators remain unbiased, consistent, 

and asymptotically normally distributed, they are no longer efficient. As a consequence, the 

usual t, F, and χ2 tests cannot be legitimately applied. Hence, remedial results may be called 

for. 



4. The remedy depends on the nature of the interdependence among the disturbances ut. But 

since the disturbances are unobservable, the common practice is to assume that they are 

generated by some mechanism. 

 
 LETS SUM IT UP: 

 

 

In last, we can say that this lesson in many ways similar to the preceding lesson on 

heteroscedasticity in that under both heteroscedasticity and autocorrelation the usual OLS 

estimators, although linear, unbiased, and asymptotically (i.e., in large samples) normally 

distributed, are no longer minimum variance among all linear unbiased estimators. In short, 

they are not efficient relative to other linear and unbiased estimators. Put differently, they may 

not be BLUE. As a result, the usual, t, F, and χ2 may not be valid. 

 
 EXCERCISES: 

 

 

 State whether the following statements are true or false. Briefly justify your answer. 

 
 

a. When autocorrelation is present, OLS estimators are biased as well as inefficient. 

b. The Durbin–Watson d test assumes that the variance of the error term ut is homoscedastic. 

c. The first-difference transformation to eliminate autocorrelation assumes that the coefficient 

of autocorrelation ρ is −1. 

d. The R2 values of two models, one involving regression in the first difference form and 

another in the level form, are not directly comparable. 

e. A significant Durbin–Watson d does not necessarily mean there is autocorrelation of the first 

order. 

f. In the presence of autocorrelation, the conventionally computed variance and standard errors 

of forecast values are inefficient. 

g. The exclusion of an important variable(s) from a regression model may give a significant d 

value. 



 

 

 

Given a sample of 50 observations and 4 explanatory variables, what can you say about 

autocorrelation if (a) d = 1.05? (b) d = 1.40? (c) d = 2.50? 

(d) d = 3.97? 

 
 

In a sequence of 17 residuals, 11 positive and 6 negative, the number of runs was 3. Is there 

evidence of autocorrelation? Would the answer change if there were 14 runs? 

 
 Explain the Durbin-Watson and Runs Test for detecting autocorrelation? 

 
 

 Elaborate the various remedial measures of autocorrelation? 
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 INTRODUCTION: 
 

The assumption 10 of the classical linear regression model (CLRM) is that there is no 

multicollinearity among the regressors included in the regression model. In this lesson we take 

a critical look at this assumption by seeking answers to the following questions: 

 
1. What is the nature of multicollinearity? 

 
 

2. Is multicollinearity really a problem? 

 
 

3. What are its practical consequences? 

 
 

4. How does one detect it? 

 
 

5. What remedial measures can be taken to alleviate the problem of 

multicollinearity? 

 OBJECTIVES: 
 

1. Understand the meaning of multicollinearity. 

 
2. Understand the consequences of multicollinearity on OLS estimates. 

 
3. Detect multicollinearity. through rule of thumb inspection. 

 
4. Detect multicollinearity. through formal econometric tests. 

 
5. Distinguish among the wide range of available tests for detecting multicollinearity.. 

 

 

 

 

 
 MULTICOLLINEARITY 



It means the existence of a perfect or exact linear relationship among some all explanatory 

variables of a regression model. 

X2i = X3i  perfect multicollinearity 

It is due to Ragnar Frisch 

1X1 + 2X2 + ................ + kXk = 0 

 
1 2…………k are constants 

 
The term multicollinearity is used in a broader sense to include the case of perfect 

multicollionearity. 

1X1 + 2X2 + ................ + kXk + Vi = 0 

 
Where Vi is a stochastic error term. 

 
Difference between perfect & less than perfect multicollinearly assumed. 

 

 
Linear combination 2  0 

 

 

 
 

which shows that X2 is not an exact linear. Combination of other X's because it is also 

determined by the stochastic error term Vi. 

 

 

 3.3.1 NATURE/ SOURCE: 



If multicollinearity is perfect in the sense, the regression coefficients of the X variables are 

indeterminate and their standard errors are infinite. If multicollinearity is less than perfect, the 

regression coefficients, although determinate, possess large standard errors (in relation to the 

coefficients themselves), which means the coefficients cannot be estimated with great 

precision or accuracy. The following can be reasons for the existence of multicollinearity: 

 
1. Data collection method 

 
2. Constraints on the model. 

 
3. Model specification. 

 
4. An over determined model. 

 

 

 

3.3.2 REMEDIAL MEASURES 
 

 Do Nothing 
 

The "do nothing" school of thought is expressed by Blanchard as follows: 

 
When students run their first ordinary least squares (OLS) regression, the first problem 

that they usually encounter is that of multicollinearity. Many of them conclude that 

there is something wrong with OLS; some resort to new and often creative techniques 

to or around the problem. But we tell them, this is wrong, Multicollineaity is God's will, 

not a problem with OLS or statistical technique in general. 

What Blanchard is saying is that multicollinearity is essentially a data deficiency 

problem (micronumerosity, again) and some times we have no choice over the data we 

have available for empirical analysis. 



 Rule of Thumb Procedures 
 

One can try the following rules of thumb to ad 

 
dress the problem of multicollinearity, the success depending on the severity of the 

multicollinearity problem. 

1. A priori information. Suppose we consider the model 

Yi 1 2X2i 3X3i ui 

 

where  Y  =  consumption,  X2  =  income,  and  X3  =  wealth.  As  noted before, 

income and wealth variables tend to be highly collinear. But suppose a priori we 

believe that 3 0.102; that is, the rate of change of consumption with respect 

to wealth is one-tenth the corresponding rate with respect to income. We can 

then run the following regression: 

Yi 1 2X2i 0.102X3i u 

i 2Xi ui 
 

Where Xi + 0.1X3i. Once we obtain ̂2, we can estimate 

relationship between 2 and 3. 

̂3  from the postulated 

 

2. Combining cross-sectional and time series data. A variant of the extraneous 

or a priori information technique is the combination of cross-sectional and time- 

series data, known as pooling the data. Suppose we want to study the demand for 

automobiles in the United States and assume we have time series data on the 

number of cars sold, average price of the car, 

InY1 1 2InP1 3InIt  ut 



Where Y = number of cars sold, P = average price, I = income, and t = time. Out 

objective is to estimate the price elasticity 2 and income elasticity 3. 
 

In time series data the price and income variables generally tend to be highly collinear. 

Therefore, if we run the proceeding regression, we shall be faced with the usual 

multicollinearity problem. A way out of this has been suggested by Tobin. He says that 

if we have cross-sectional data (for example, data generated by consumer panels, or 

budget studies conducted by various private and governmental agencies), we can obtain 

a fairly reliable estimate of the income elasticity 3 because in such data, which are at 

a point in time, the prices do not vary much. Let the cross-sectionally estimated income 

elasticity be 

regression as 

̂3.  Using  this  estimate,  we  may  write  the  preceding  times  series 

Y*   InPu 
t 1 2 t t 

 

Where Y* = In Y - ̂3  In I, that is, Y* represents that value of Y after removing from it 

the effect of income. We can now obtain an estimate of the price elasticity 2 from the 

preceding regression. 

 

3) Dropping a variable (s) and specification bias. When faced with severe 

multicollinearity, one of the “simplest” things to do is to drop one of the collinear 

variables. Thus, in our consumption-income-wealth illustration, which shows that, 

whereas in the original model the income variable was statistically insignificant, it is 

now ‘highly’ significant. 

But in dropping a variable from the model we may be committing specification bias or 

specification error. Specification bias arises from incorrect specification of the model 

used in the analysis. Thus, if economic theory says that income and wealth should both 



be included in the model explaining the consumption expenditure, dropping the wealth 

variable would constitute specification bias. 

Yi 1 2X2i 3X3i ui 

 

But we mistakenly fit the model 

Yi  b1 b12X2i  ûi  .......................... 1.)( 
 

Then it can be shown that 

E(b12)2 3b32  ....................... 2() 
 

where b32 = slope coefficient in the regression of X3 on X2. Therefore, it is obvious that 

b12 will be a biased estimate of 2 as long as b32 is different from zero (it is assumed 

that 3 is different from zero; otherwise there is no sense in including X3 in the 

original model). Of course, if b32 is zero, we have no multicollinearity problem to begin 

with. It is also clear from that if both b32 and 3 are positive (or both are negative), 

E(b12) will be greater than 2; hence, on the average b12 will overestimate 2, leading 

to a positive bias. Similarly, if the product b32 3 is negative, on the average b12 will 

underestimate 2, leading to a negative bias. 

4) Transformation of variables. Suppose we have time series data on 

consumption expenditure, income and wealth. One reason for high multicollinearity 

between income and wealth in such data is that over time both the variables tend to 

move in the same direction. One way of minimizing this dependence is to proceed as 

follows. 

 

If the relation  
Yt  1 2X2t 3X3t ut  .......................... 3.() 



Holds at time t, it must also hold at time t – 1 because the origin of time is arbitrary 

anyway. Therefore, we have 

Yt1   1 2X2,t1 3X3,t1 ut1.......................................... 4() 
 

If we subtract (3) from (1), we obtain 

Yt Yt1 2(X2t X2,t1)3(X3t X3,t1)vt  ............. (5.). 
 

 

Where vt ut ut1.Equation (5 ) is known as the first difference form because we run 

the regression, not on the original variables, but on the differences of successive values 

of the variables. 

The first difference regression model often reduces the severity of multicollinearity 

because, although the levels of X2 and X3 may be highly correlated, there is no a priori 

reason to believe that their differences will also be highly correlated. 

As we shall see in the lessons on time series econometrics, an incidental advantage of 

the first – difference transformation is that it may make a nonstationary time series 

stationary. In those lessons we will see the importance of stationary time series Another 

commonly used transformation in practice is the ratio transformation. 

Consider the model: 

Yt  1 2X2t  3X3t  ut  ...................... 6() 
 

Where Y is consumption expenditure in real dollars, X2 is GDP, and X3 is total 

population. Since GDP and population grow over time, they are likely to be correlated. 

One “Solution” to this problem is to express the model on a per capita basis, that is, by 

dividing (6) by X3, to obtain: 



2i 

Yt     1 
 

 


 


X2t 




 ut 

X 1X  2X  3 X ……………(7) 
3t  3t   3t   3t 



Such a transformation may reduce collinearity in the original variables. 

 
But the first – difference or ratio transformations are not without problems. For 

instance, the error term vt in ( ) may not satisfy one of the assumptions of the classical 

linear regression model, namely, that the disturbances are serially uncorrelated. 

5) Additional or new data. Since multicollinearity is a sample feature, it is 

possible that in another sample involving the same variables collinearity may be so 

serious as in the first sample. Sometimes simply increasing the size of the sample (if 

possible) may attenuate the collinearity problem. For example, in the three-variable 

model we saw that 

var̂(2) 2 

x2 (1r2 ) 
2i 23 

Now as the sample size increases, 
2 

will generally increase. Therefore, for any 

given r23, the variance of ̂2  will decrease, thus decreasing the standard error, which 

will enable us to estimate 2 more precisely. 

6) Other methods of remedying multicollinearity. Multivariate statistical 

techniques such as factor analysis and principal components or techniques such as ridge 

regression are often employed to ‘solve’ the problem of multicollinearity. 

Unfortunately, these techniques are beyond the scope of this book, for they cannot be 

discussed competently without resorting to matrix algebra. 

 

 

 SUMMARY AND CONCLUSIONS: 

x 



1. One of the assumptions of the classical linear regression model is that there is no 

multicollinearity among the explanatory variables, the X’s. Broadly interpreted, 

multicollinearity refers to the situation where there is either an exact or approximately exact 

linear relationship among the X variables. 

 
2. The consequences of multicollinearity are as follows: If there is perfect collinearity among 

the X’s, their regression coefficients are indeterminate and their standard errors are not 

defined. If collinearity is high but not perfect, estimation of regression coefficients is possible 

but their standard errors tend to be large. As a result, the population values of the coefficients 

cannot be estimated precisely. However, if the objective is to estimate linear combinations of 

these coefficients, the estimable functions, this can be done even in the presence of perfect 

multicollinearity 

3. Although there are no sure methods of detecting collinearity, there are several indicators of 

it, which are as follows: 

 
(a) The clearest sign of multicollinearity is when R2 is very high but none of the regression 

coefficients is statistically significant on the basis of the conventional t test. This case is, of 

course, extreme. 

 
(b) In models involving just two explanatory variables, a fairly good idea of collinearity can be 

obtained by examining the zero-order, or simple, correlation coefficient between the two 

variables. If this correlation is high, multicollinearity is generally the culprit. 

 
(c) However, the zero-order correlation coefficients can be misleading in models involving 

more than two X variables since it is possible to have low zero-order correlations and yet find 

high multicollinearity. In situations like these, one may need to examine the partial correlation 

coefficients. 

 
(d) If R2 is high but the partial correlations are low, multicollinearity is a possibility. Here one 

or more variables may be superfluous. But if R2 is high and the partial correlations are also 



high, multicollinearity may not be readily detectable. Also, as pointed out by C. Robert, 

Krishna Kumar, John O’Hagan, and Brendan McCabe, there are some statistical problems with 

the partial correlation test suggested by Farrar and Glauber. 

 
(e) Therefore, one may regress each of the Xi variables on the remaining X variables in the 

model and find out the corresponding coefficients of determination R2 . A high R2 would 

suggest that Xi is highly correlated with the rest of the X’s. Thus, one may drop that Xi from 

the model, provided it does not lead to serious specification bias. 

 
4. Detection of multicollinearity is half the battle. The other half is concerned with how to get 

rid of the problem. Again there are no sure methods, only a few rules of thumb. Some of these 

rules are as follows: (1) using extraneous or prior information, (2) combining cross-sectional 

and time series data, (3) omitting a highly collinear variable, (4) transforming data, and (5) 

obtaining additional or new data. Of course, which of these rules will work in practice will 

depend on the nature of the data and severity of the collinearity problem. 

 
5. We noted the role of multicollinearity in prediction and pointed out that unless the 

collinearity structure continues in the future sample it is hazardous to use the estimated 

regression that has been plagued by multicollinearity for the purpose of forecasting. 

 

 
 LETS SUM IT UP: 

 

In the concluding remarks, we can say that in cases of near or high multicollinearity, one is 

likely to encounter the following consequences: 

 
1. Although BLUE, the OLS estimators have large variances and covariances, making precise 

estimation difficult. 



2. Because of consequence 1, the confidence intervals tend to be much wider, leading to the 

acceptance of the “zero null hypothesis” (i.e., the true population coefficient is zero) more 

readily. 

 
3. Also because of consequence 1, the t ratio of one or more coefficients tends to be 

statistically insignificant. 

 
4. Although the t ratio of one or more coefficients is statistically insignificant, R2, the overall 

measure of goodness of fit, can be very high. 

 
5. The OLS estimators and their standard errors can be sensitive to 

small changes in the data. 

 

 

 EXCERCISES: 
 

What do you mean by multicollinearity? 

 
What is Rule of Thumb? 

 
 How can we detect multicollinearity? 

 
Q.4.State with reason whether the following statements are true, false, or uncertain: 

 
 

a. Despite perfect multicollinearity, OLS estimators are BLUE. 

 
 

b. In cases of high multicollinearity, it is not possible to assess the individual significance of 

one or more partial regression coefficients. 

 
c. If an auxiliary regression shows that a particular R2 is high, there is definite evidence of 

high collinearity. 



d. High pair-wise correlations do not suggest that there is high multicollinearity. 

 
 

e. Multicollinearity is harmless if the objective of the analysis is prediction only. 

 
 

f. Ceteris paribus, the higher the VIF is, the larger the variances of OLS estimators. 

 
 

g. The tolerance (TOL) is a better measure of multicollinearity than the VIF. 

 
 

h. You will not obtain a high R2 value in a multiple regression if all the partial slope 

coefficients are individually statistically insignificant on the basis of the usual t test. 

 
i. In the regression of Y on X2 and X3, suppose there is little variability in the values of X3. 

This would increase var ( ˆ β3). In the extreme, if all 

X3 are identical, var ( ˆ β3) is infinite. 

 
Q.5 a. Show that if r1i = 0 for i = 2, 3, . . . , k then R1.2 3. . . k = 0 

 
 

b. What is the importance of this finding for the regression of variable X1(=Y) on X2, X3, . . . , 

Xk? 
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t 

 INTRODUCTION: 
 

Let us return to our wages productivity regression. There we saw that the d value was 0.1229 

and based on the Durbin-Watson d test we concluded that there was positive correlation in the 

error term. Could this correlation have arisen because our model was not correctly specified? 

Since the data underlying regression is time series data, it is quite possible that both wages and 

productivity exhibit trends. If that is the case, then we need to include the time or trend, t, 

variable in the model to see the relationship between wages and productivity net of the trends 

in the two variables. 

To test this, we included the trend variable and obtained the following results. 

Ŷt  1.47521.305X7t  0.903t2 

se(13.18) (0.276)5 (0.420)3 

t (0.111)9(4.723)0 (2.149)0 

R2  0.963;1 d0.204 
 

The interpretation of this model is straightforward: Over time, the index of real wages has been 

decreasing by about 0.90 units per year. After allowing for this if the productivity index went 

up by a unit, on average, the real wage index went up by about 1.30 units, although this 

number is not statistically different from one (why?). What is interesting to note is that even 

allowing for the trend variable, the d value is still very low, suggesting pure autocorrelation 

and not necessarily specification error. 

To test this, we regress Y on X and X2 to test for the possibility that the real wage index may 

be nonlinearly related to the productivity index. The results of this regression are as follows: 

Ŷt  16.21811.948X8t  0.007X92
 

t (5.489)1(24.986)8(15.936)3 

R2 0.9947 

 
d1.0 



These results are interesting. All the coefficients are statistically highly significant, the  p 

values being extremely small. From the negative quadratic term, it seems that although the real 

wage index increases as the productivity index increases, it increases at a decreasing rate. But 

look at the d value. It still suggests positive autocorrelation in the residuals, for dL = 1.391 and 

dU = 1.60 and the estimated d value lies below dL. 

It may be safe to conclude from the proceeding analysis that our wages-productivity regression 

probably suffers from pure autocorrelation and not necessarily from specification bias. 

Knowing the consequences of autocorrelation, we may therefore want to take some corrective 

action. We will do so shortly. 

Incidentally, for all the wages productivity regression that we have presented above, we 

applied the Jarque–Bera test of normality and found that the residuals were normally 

distributed, which is comforting because the d terms assumes normally of the error term. 

 OBJECTIVES: 
 

1. The key objective is to find what are the criteria in choosing a model for empirical analysis. 

 
2. Our  objective  is to find what types of model mis- specification errors is one likely to 

encounter in practice. 

3. The another objective is to find how does one evaluate the performance of competing 

models? 

 CORRECTING FOR (PURE) AUTOCORRELATION: 
 

 THE METHOD OF GENERALIZED LEAST SQUARES (GLS): 

 
Knowing the consequences of autocorrelation, especially the lack of efficiency of OLS 

estimators, we may need to remedy the problem. The remedy depends on the 

knowledge one has about the nature of interdependence among the disturbances, that is, 

knowledge about the structure of autocorrelation. 



As a starter, consider the two-variable regression model: 

Yt  1 2Xt  ut 

 

And assume that the error term follows the AR(1) scheme, namely, 

(ut  put1)t  1p1 
 

Now we consider two cases: (1) p is known and (2) is not known but has to be 

estimated. 

When is known 

 
If the coefficient of first-order autocorrelation is known, the problem of autocorrelation can be 

easily solved. Hence, 

Yt1 1 2Xt1 ut1 1 

 

Multiplying by on both sides, we obtain 
 

Yt1 1 2Xt1 put1 2 

 

Subtracting (2 ) from (1 ) gives 

(Yt  Yt1)1(1)2(Xt  Xt1)t  3 

Where t  (ut  put1) 

We can express (3 ) as 

Y* * *X* 
t 1 2 t t 4 

Where * (1),Y* (Y Y ),X* (X pX ),and* 
1 1 t t t1 t t t1 2 2 5 



Since the error term in (4) satisfies the usual OLS assumptions, we can apply OLS to the 

transformed variables Y* and X* and obtain estimators with all the optimum properties, 

namely, BLUE. In effect, running is tantamount to using generalized least squares (GLS) 

discussed in the previous lesson – recall that GLS is nothing but OLS applied to the 

transformed model that satisfies the classical assumptions. 

Regression (4) is known as the generalized, or quasi, difference equation. It involves 

regressing Y on X, not in the original form, but in the difference form, which is obtained by 

subtracting a proportion  () of the value of a variable in the previous time period from its 

value in the current time period. In this differencing procedure we lose one observation 

because the first observation has no antecedent. To avoid this loss of one observation, the first 

observation  on  Y  and  X  is  transformed  as  follows.   Y1
 1p2 andX1 1p2. This 

transformation is known as the Prais-Winsten transformation. 

 OLS VERSUS FGLS AND HAC 

The practical problem facing the researcher is this: In the presence of auto-correlation, OLS 

estimators, although unbiased, consistent, and asymptotically normally distributed, are not 

efficient. Therefore, the usual inference procedure based on the t, F, and 2 
tests is no longer 

appropriate. On the other hand, FGLS (Feasible GLS and EGLS: Estimated GLS) HAC 

(Heteroscedasticity and autocorrelation estimation) produce estimators that are efficient, but 

the finite, or small-sample, properties of these estimators are not well documented. This means 

in small samples the FGLS and HAC might actually do worse than OLS. As a matter of fact, in 

a Monte Carlo study Griliches and Rao found that if the sample is relatively small and the 

coefficient of auto-correlation, , is less than 0.3, OLS is as good or better than FGLS. As a 

practical matter, then, one may use OLS in small samples in which the estimated rho is, say, 

less than 0.3. Of course, what is a large and what is a small sample are relative questions, and 

one has to use some practical judgement. If you have only 15 to 20 observations, the sample 

may be small, but if you have, say, 50 or more observations, the sample may be reasonably 

large. 



 Coexistence of Autocorrelation and Heteroscedasticity 

What happens if a regression model suffers from both heteroscedasticity and autocorrelation? 

Can we solve the problem sequentially, that is, take care of heteroscedasticity first and then 

autocorrelation? As a matter of fact, one author contends that “Autoregression can only be 

detected after the heteroscedasticity is controlled for”. But can we develop an omnipotent test 

that can solve these and other problems (e.g., model specification) simultaneously? Yes, such 

tests exist, but their discussion will take us far afield. It is better to leave them for references. 



 SUMMARY AND CONCLUSIONS 

 
1. If the assumption of the classical linear regression model that the errors or 

disturbances ut entering into the population regression function (PRF) are 

random or uncorrelated – is violated, the problem of serial or autocorrelation 

arises. 

2. Autocorrelation can arise for several reasons, such as inertia or sluggishness of 

economic time series, specification bias resulting from excluding important 

variables from the model or using incorrect functional form, the cobweb 

phenomenon, data massaging, and data transformation. As a result, it is useful to 

distinguish between pure autocorrelation and “induced” autocorrelation because 

of one or more factors just discussed. 

3. Although in the presence of autocorrelation the OLS estimators remains 

unbiased, consistent, and asymptotically normally distributed, they are no longer 

efficient. As a consequence, the usual t, F, and 2 
tests cannot be legitimately 

applied. Hence, remedial results may be called for. 

 
4. The remedy depends on the nature of the interdependence among the 

disturbances ut. But since the disturbances are unobservable, the common 

practice is to assume that they are generated by some mechanism. 

5. The mechanism that is commonly assumed is the Markov first-order 

autoregressive scheme, which assumes that the disturbance in the current time 

period is linearly related to the disturbance term in the previous time period, the 

coefficient of autocorrelation p providing the extent of the interdependence. This 

mechanism is known as the AR(1) scheme. 



6. If the AR(1) scheme is valid and the coefficient of autocorrelation is known, the 

serial correlation problem can be easily attacked by transforming the data 

following the generalized difference procedure. The AR(1) Scheme can be easily 

generalized to an AR(p). One can also assume a moving average (MA) 

mechanism or a mixture of AR and MA schemes, known as ARMA. This topic 

will be discussed in the lessons on time series econometrics. 

7. Even if we use an AR(1) scheme, the coefficient of autocorrelation is not known 

a priori. We considered several methods of estimating p, such as the Durbin- 

Watson d, Theil-Nagar modified d, Cochrane-Orcutt (C-O) iterative procedure, 

C-O two step method, and the Durbin two-step procedure. In large samples, 

these methods generally yield similar estimates of p, although in small samples 

they perform differently. In practice, the C-O interative method has become 

quite popular. 

8. Using any of the methods just discussed, we can use the generalized difference 

method to estimate the parameters of the transformed model by OLS, which 

essentially amounts to GLS. But since we estimate (p̂) we call the method 

of estimation as feasible, or estimated, GLS, or FGLS or EGLS for short. 

 
1.   In  using EGLS, one has to be careful in dropping the first observation, for  in   

small samples the inclusion or exclusion of the first observation can make a 

dramatic difference in the results. Therefore, in small samples it is advisable to 

transform the first observation according to the Prais-Winsten procedure. In 

large samples, however, it makes little difference if the first observation is 

included or not. 



10. It is  very important to  note  that  the  method  of EGLS  has the  usual optimum 

statistical properties only in large samples. In  small samples, OLS  may actually 

do better that EGLS, especially if p0.3. 
 

11. Instead of using EGLS, we can still use OLS but the correct the standard errors 

for autocorrelation by the Newey-West HAC procedure. Strictly speaking, this 

procedure is valid in large samples. One advantages of the HAC procedure is 

that it not only corrects for autocorrelation but also for heteroscedasticity, if it is 

present. 

12. Of course, before remediation comes detection of autocorrelation. There are 

formal and informal methods of detection. Among the informal methods, once 

can simply plot the actual or standardized residuals, or plot current residuals 

against past residuals. Among formal methods, one can use the runs test, Durbin 

Watson d test, asymptotic normality test, Berenblutt-Webb test, and Breusch- 

Godfrey (BG) test. Of these, the most popular and routinely used is the Durbin- 

Watson d test, for it is much more general in that it allows for both AR and MA 

error structures as well as the presence of lagged regressed as an explanatory 

variable. But keep in mind that it is a large sample test. 

 LETS SUM IT UP: 
 

In concluding remarks, we can say that if particular model is not specified correctly, we face 

the problem of model specification error or model specification bias. 



 EXCERCISES: 
 

Q1 State Breusch Pagan Godfrey test. 

 
Q2 What happens to OLS estimation in presence of autocorrelation? 

Q3 What is EGLS or FGLS? 

Q4 Does heteroscedasticity makes the estimators biased? Explain. 

Q5 Describe correlation for pure autocorrelation. 

Q6 Describe multicollinearity its test and remedial measures. 
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INTRODUCTION: 
 

 

In regression analysis specification is the process of developing a regression model. This 

process consists of selecting an appropriate functional form for the model and choosing which 

variables to include. As a first step of regression analysis, a person specifies the model. If an 

estimated model is misspecified, it will be biased and inconsistent. 

 

Specification error occurs when an independent variable is correlated with the error term. 

There are several different causes of specification error: 

 

 incorrect functional form 

 a variable omitted from the model may have a relationship with both the dependent 

variable and one or more of the independent variables (omitted-variable bias);[2]
 

 an irrelevant variable may be included in the model 

 the dependent variable may be part of a system of simultaneous equations (simultaneity 

bias)measurement errors may affect the independent variables 

 

One of the assumptions of the classical linear regression model (CLRM) Assumption 9, is that 

the regression model used in the analysis is “Correctly” specified: If the model is not 

“Correctly” specified, we encounter the problem of model specification error or model 

specification bias. In this lesson we take a close and critical look at this assumption, because 

searching for the correct model is like searching for the Holy Grail. 

 

 OBJECTIVES: 

 

1. Understand the model selection criteria for empirical analysis. 

 
2. Understand the specification errors. 

 
3 

Understand the consequences of model specification errors on OLS estimates. 

http://en.wikipedia.org/wiki/Regression_analysis
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Omitted-variable_bias
http://en.wikipedia.org/wiki/Specification_(regression)#cite_note-2
http://en.wikipedia.org/wiki/Simultaneous_equation
http://en.wikipedia.org/wiki/Measurement_errors


4. Detect specification errors through formal econometric tests. 

 
5. Distinguish among the wide range of available tests for detecting specification errors. 

 
 MODEL SELECTION CRITERIA: 

 

According to Hendry and Richard, model chosen for empirical analysis should satisfy the 

following criteria; 

 

1. Be data admissible: that is, predictions made from the model must be logically  

possible. 

2. Be consistent with theory; that is, it must make good economic sense. For example, if 

Milton Friedman’s permanent income hypothesis holds, the intercept value in the 

regression of permanent consumption on permanent income is expected to be zero. 

3. Have weakly exogenous regressors; that is, the explanatory variables, or regressors, 

must be uncorrelated with the error term. 

4. Exhibit parameter constancy: that is, the value s of the parameters should be stable. 

Otherwise, forecasting will be difficulty. As Friedman notes, “The only relevant test of 

the validity of a hypothesis (Model) is comparison of its predictions with experience.” 

In the absence of parameter constancy, such predictions will not be reliable. 

5. Pure Random: Exhibit data coherency; that is, the residual estimated from the model 

must be purely random (technically, white noise). In other words, if the regression 

model is adequate, the residuals from this model must be white noise. If that is not the 

case, there is some specification error in the model. Shortly, we will explore the nature 

of specification error(s). 

6. Be encompassing: that is the model should encompass or include all the rival models in 

the sense that it is capable of explaining their results. In short, other models cannot be 

an improvement over the chosen model. 

 

 

 
 TYPES OF SPECIFICATION ERRORS 
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Assume that on the basis of the criteria just listed we arrive at the model that we accept 

as a good model. To be concrete, let this model be 

Yi 1 2Xi  X2  X3 u2i (1) 

Where Y = total cost of production and X=output. Equation (1) is the familiar text 

book example of the cubic total cost function,. 

But suppose for some reason (say, laziness in plotting the scatter gram) a researcher 

decides to use the following model: 

Yi 1 2Xi  X2 u2i (2) 

Note that we have changed the notation to distinguish this model from the true model. 

Since (1) is assumed true, adopting (2) would constitute a specification error, the error 

consisting in omitting a relevant variable( X3). Therefore, the error term u2i. In (2) is in 

fact  
u2i uli  X3

 

 

(3) 

We shall see shortly the importance of this relationship. 

Now suppose that another researcher uses the following model; 

Yi  1 2Xi  X2  X3  X4 u3i (4) 

If (1) is the “Truth,” (4) also constitutes a specification error, the error here consisting 

in including an unnecessary or irrelevant variable in the sense that the true model 

assumes 5To be zero. The new error term is in fact 

u3i u1i  X4
 (5) 

=uli Since 5= 0 in the true model. 

Now assume that yet another researcher postulates the following mode: 

In Yi 1 2Xi  X2  X3 u4i (6) 

In relation to the true model, (6) would also constitute a specification bias, the bias here 

being the use of the wrong functional form: In (1) Y appears linearly, whereas in (6) it 

appears log-olinearly. 



i X i 

Finally, consider the researcher who uses the following model: 

Y* * *X* *X*2 *X*3 u*
 (7) 

i i 2 i 3 i 4   i i 

Where Y*= Yi+i and X*= Xi + wi, i and wi Being the errors of measurement. What 
i i 

(7) states is that instead of using the true Yi And Xi we use their proxies, Y*and *
 

Which may contain errors of measurement. Therefore, in (7) we commit the errors of 

measurement bias. In applied work data are plagued by errors of approximations or 

errors of incomplete coverage or simply errors of omitting some observations. In the 

social sciences we often depend on secondary data and usually have no way of knowing 

the types of errors, if any, made by the primary data-collecting agency. 

Another type of specification error relates to the way the stochastic error i (or t) 

enters regression model. Consider for instance, the following bivariate regression 

model without the intercept term; 

Yi = XiuI (8) 

Where the stochastic error term enters multiplicatively with the property that. satisfies 

the assumptions of the CLRM, against the following model 

Yi = Xi + ui (9) 

Where the error term enters additively. Although the variables are the same in the two 

models, we have denoted the slope coefficient in (8) by 𝛽 and the sple coefificient in 

(9) by  Now if (8) is the “correct” or “true” model, would the estimated  provide an 

unbiased estimate of the true 𝛽2 That is, will E(̂) If that is not the case, improper 

stochastic specification of the error term will constitute another source of specification 

error. 

To sum up, in developing an impirical model, one is likely to commit one or more of 

the following specification errors: 

1. Omission of a relevant variable(s) 

2. Inclusion of an unnecessary variable(s) 



3. Adopting the wrong functional form 

4. Errors of measurement 

5. In correct specification of the stochastic error term 

Before turning to an examination of these specification errors in some detail, it may be 

fruitful to distinguish between model specification errors and model mis-specification 

errors. The first four types of error discussed above are essentially in the nature of 

model specification errors in that we have in mind a ‘true” model but somehow we 

donot estimate the correct model. In model mis-specification errors, we do not know 

what the true model is to begin with. In this context one may recall the controversy 

between the Keynesians and the monetarists. The monetarists give primacy to money in 

explaining changes in GDP, whereas the Keynesians emphasize the role of government 

expenditure to explain changes in GDP. So to speak there are two competing models. 

In what follows, we will first consider model specification errors and then examine 

model mis-specification errors. 

 

 

 CONSEQUENCES OF MODEL SPECIFICATION ERRORS 
 

Whatever the sources of specification errors, what are the consequences? To keep the 

discussion simple, we will answer this question in the context of the three-variable 

model and consider in this section the first two types of specification errors discussed 

earlier, namely (1) underfitting a model, that is, omitting relevant variables, and (2) 

overfitting a model, that is, including unnecessary variables. Our discussion here can be 

easily generalized to more than two regressors, but with tedious algebra.., matric 

algebra becomes almost a necessity once we go beyond the three variable case. 

 Underfitting a Model (Omitting a Relevant Variable) 

Suppose the true model is 

Yi = 1 + 2X2i + 3X3i + ui 



2i 

But for some reason we fit the following model: 

Yi = 1 + 2X2i + vi 

The consequences of omitting variable X3 are as follows: 

1. If the left-out, or omitted, variable X3 is correlated with the included variable X2 

that is r23, the correlation coefficient between the two variables is nonzero, 

̂1and̂2are basied as well as inconsistent. That is E(̂1)1  and E(̂2)2the 

bias does not disappear as the sample size get larger. 

2. Even if X2 and X3 are not correlated ̂1 although ̂2is now unbiased. 

3. The disturbance variance 2 is incorrectly estimated. 

4. The conventionally measured variance ̂1(2 /x2
 is a biased estimator of the 

variance of the true estimator ̂1
 

5. In consequence, the usual confidence interval and hypothesis-testing procedures 

are likely to give misleading conclusions about the statistical significance of the 

estimated parameters. 

6. As another consequence, the forecasts based on the incorrect mode l and the 

forecast (confidence) intervals will be unreliable. 

 

E(̂2)2 3b32 

 

Where b32is the slope in the regression of the excluded variable X3 on the included 

variable X2(b32 = 𝑥 𝑥 / 𝑥2 ). As shows, ̂ is biased, unless 3 and 32 or both are 
3𝑖 2𝑖 2𝑖 2 

zero. We rule out 3 being zero, because in that case we do not have specification error 

to being with. The coefficient 32 will be zero if X2 and X3 are uncorrelated, which is 

unlikely in most economic data. 

Now let us examine the variances of ̂2and ̂2
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var( ̂    ) = 
2

 
= 

2  
VIF 

2 𝑥2 (1−r2  ) 𝑥2
 

2𝑖 23 2𝑖 

 

Where VIF (a measure of collinearity) is the variance inflation factor [=1/(1-𝑟2 )] is the 

correlation coefficient between variable X2 and X3. 

 
INCLUSION OF AN IRRELEVANT VARIABLE (OVERFITTING A MODEL) 

Now let us assume that 

Yi = 1 + 2X2i +ui 

Is the truth, but we fit the following model. 

 
Yi = 1 + 2X2i + 3X3i +ui 

 
And thus commit the specification error of including an unnecessary variable in the 

model. 

The consequences of this specification error are as follows: 

 
1. The OLS estimators of the parameters of the “incorrect” model are all unbiased 

and consistent, that is E(1) = 1, E(̂2)=  2,and 

2. 2. The error variance 2 Is correctly estimated. 

E(̂3)= 3 =0 

3. The usual confidence interval and hypothesis-testing procedures remain valid. 

4. However, the estimated 's will be generally inefficient, that is, their variances 

will be generally larger than those of the 

From the usual OLS formula we know that 

̂'sof the true model. 
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    1 

1−r2 

Since 0  r2  1, it follows that  ̂ var̂ 
 
; that is, the variance of ̂2is generally 

greater than the variance of ̂2 even though, on average ̂2= ̂2 . 

The implication of this finding is that the including of the unnecessary variable X3 

makes the variance of  ̂2larger than necessary, thereby making  ̂2less precise. This is 

also true of ̂1 

 

 

 TESTS OF SPECIFICATION ERRORS 
 

 Detecting the presence of unnecessary variables (Over fitting a model) 

 
Suppose we develop a K-variable model to explain a phenomenon: 

Yi  = 1  + 2X2i + ................+kXki + ui 

However, we are not totally sure that, say, the variable Xk really belongs in the 

model. One  simple way to  find  this  out is to test the  significance that we are not sure 

whether, say k with the usual t test: t= ̂k /se(̂k) But suppose that we are not sure 

whether, say, X3 and X4 legitimately belong in the model. This can be easily 

ascertained by the F test. Thus, detecting the presence of an irrelevant variable(or 

variables) is not a difficult task. 

It is, however, very important to remember that in carrying out these tests of 

significance we have a specific model in mind. We accept that model as the maintained 

) = 

2 



hypothesis or the “truth,” however tentative it may be. Given that model, then, we can 

find out whether one or more regressors are really relevant by the usual t and f tests. 

But note carefully that we should not use the t and f tests to build a model iteratively, 

that is, we should not say that initially Y is related to X2 only because ̂2is statistically 

significant and then expand the model to include X3 and decide to keep that variable in 

the model if ̂3
 turns out to be statistically significant, and so on. This strategy of 

building model is called the bottom-up approach (starting with a smaller model and 

expanding it as one goes along) or by the somewhat pejorative term, data mining (other 

names are regression fishing, data grubbing, data snooping , and number crunching). 

 

 

 Tests for Omitted Variables and incorrect functional form 

 
In practice we are never sure that the model adopted for empirical testing is “the truth, 

the whole truth and nothing but the truth.” On the basis of theory or introspection and 

prior empirical work, we develop a model that we believe captures the essence of the 

subject under study. We then subject the model to empirical testing. After we obtain the 

results, we being the post mortem, keeping in mind the criteria of a good model 

discussed earlier. It is at this stage that we come to know if the chosen model is 

adequate. In determining model adequacy, we look at some broad features of the 

results, such as the R2 value, the estimated coefficients in relation to their prior 

expectations, the Durbin-Watson statistic, and the like. If these diagnostics are 

reasonably good, we proclaim that the chosen model is a fair representation of reality. 

By the same token, if the results do not look encouraging because the R2 value is too 

low or because very few coefficients are statistically significant or have the correct 

signs or because the Durbin-Watson d is too low, then we being to worry about model 

adequacy and look for remedies. May we have omitted an important variable, or have 



1 
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used the wrong functional form, or have not first differenced the time series (to remove 

serial correlation), and so on. 

 The Durbin-Watson d Statistics Once Again. 

 
If we examine the routinely calculated Durbin-Watson d we see that for the linerar cost 

function the estimated d suggesting that there is positive “correlation” in the estimated 

residuals: for n = 10 and k' = 1 and then 5 percent d critical value are dL Liewise, the 

computed value for the quadratic cost function is 1..38, whereas the 5 percent critical 

values are dL = 0.697 and DU= 1.641, indicating indecision. But if we use the modified 

d test we can say that there is positive “correlation” in the residuals, for the computed d 

is less than dU. For the cubic cost function, the true specification, the estimated d value 

does not indicate any positive “correlation” in the residuals. 

The observed positive “correlation” in the residuals when we fit the linear or quadratic 

model is not a measure of (first oder) serial correlation but of fact that some variable(s) 

that belong in the modeol are included in the error term and need to be culled out from 

it and introduced in their own right as explanatory variables: If we exclude the 𝑥3from 

the cost function, the error term in the mis-specified model is in fact (  +  𝛽4𝑋3and it 
 

will exhibit  a systematic  pattern  (e.g.  positive autocorrelation) if  𝑋3in fact affects  Y 

significantly. 

 
To use the Durbin-Watson test for detecting model specification error(s), we proceed as 

follows 

1. From the assumed mode, obtain the OLS residuals. 

2. If it is believed that the assumed model is mis-specified because it excludes a 

relevant explanatory variable, say, Z from the model, order the residuals 

obtained in Step 1 according to increasing values of Z. Note: The Z variable 



 t 

12 t1 
 n 

could be one of the x variables included in the assumed model or it could be 

some function of that variable, such as X2 and X3. 

3. Compute the d statistic from the residuals thus ordered by the usual d formula, 

namely 

d


n

 (̂ ̂ 
 

)2 

 t1 ̂2 


Note: The subscript t is the index of observation here and does not necessarily mean 

that the date are time series. 

4. From the Durbin-Watson tables, if the estimated d value is significant, then one 

can accept the hypothesis of model mis-specification. If that turns out to be the 

case, the remedial measures will naturally suggest themselves. Ramsey’s Reset 

Test. Ramsey has porposed a general test of specification error called RESET 

(regression specification error test0. Here we will illustrate only the simplest 

version of the test. To fix ideas, let us continue with out cost-output example that 

the cost function is linerar in output as. 

Yi = 1 + 1Xi + 3i 
 

 

Where Y= total cost and X= output. Now if we plot the residuals ̂i 

 

obtained from this 

regression against Ŷi
 the estimated Yi from this model, we get the picture shown in 

figure Although ̂i and  ̂iŶi are necessarily zero. 

t 



new 

F= new old  

3 i 4 i 

the residuals in this figure show a pattern in which theirmean changes systematically 

with Ŷi .  This  would  suggest  that  if  we  introduce  Ŷi in  some  form  as  regressor  (s),  it 

should increase R2. And if the increase in, R2 is statistically significant (on the basis of 

the F test discussed in previous Lesson), it would suggest that the liner cost function 

was mis-specified. This sis essentially the idea behind RESET. The steps involved in 

RESET are as follow: 

1. From the chosen model, obtain the estimated Y i, that is Ŷ1. 

Yi = 1 + 2Xi + u3i 

2. Rerun  (13.4.6)  introducing Ŷ1in  some  form  as  an  additional regressor(s).  From 

Figure ,we observe that there is a curvilinear relationship between ̂i and Ŷi . 

Suggesting that one can introduce Ŷ2anYd̂3as additional regressors Thus, we run. 
i i 

Yi  =  1 2Xi Ŷ2 Ŷ3 ui 

3. Let the R2 obtained from be R2
new and that obtained from be R2

old Then we can 

use the F test first introduced in namely. 

  (R2 − R2 )/number of regressors 

(1−R2 )/(n−number of parametres in the new model 

to find out if the increase in R2 from using is statistically significant. 

4. Lagrange Multiplier (LM) Test for Adding Variables. This is an alternative 

to Ramsey’s RESET test. To illustrate this test, we will continue with the 

preceding illustrative example. 

If we compare the linear cost function with the cubic cost function the former is a 

restricted version of the latter.The restricted regression assumes that the coefficients of 

the squared and cubed output terms are equal to zero. To test this, the LM test proceeds 

as follows; 

1. Estimate the restricted regression by OLS and obtain the residuals 𝑢̂𝑖. 



2. If in fact the unrestricted regression is the true regression the residuals obtained 

in should be related to the squared and cubed output terms, that is 𝑋2and 𝑋3 
𝑖 𝑖 

3. This   suggests   that   we   regress   the   𝑢̂𝑖obtained   in   Step   1   on   all   the 

regressors(including those in the restricted regression) which in the present case 

means. 

𝑢̂𝑖 = 1 + 2Xi + 3𝑋2 + 4𝑋3 + i 
𝑖 𝑖 

Where v is an error term with the usual properties. 

4. For large-sample size, Engle has shown that n(the sample size0 times the R2
 

Estimated from the (auxiliary) regression follows the chisquare distribution with 

df equal to the number of resrtrictions imposed by the restricted regression, two 

in the present example since the terms 𝑋2 and 𝑋3are dropped from the model. 
𝑖 𝑖 

Symbolically, we write. 
 

nR2  
X2

(number of restrictions) 

𝑎𝑠𝑦 

 

Where as Y means asymptotically, that is, in large samples. 

5. If the chi-square value obtained from exceeds the critical chi-square value at the 

chosen level of significant, we reject the restricted regression. Otherwise, we do 

not reject it. 

 

 
 SUMMARY AND CONCLUSIONS: 

 

1. The assumption of the CLRM that the econometric model used in analysis is correctly 

specified has two meanings. One, there are no equation specification errors, and two, there are 

no model specification errors. In this lesson the major focus was on equation specification 

errors. 



2. The equation specification errors discussed in this lesson were 

 
(1) omission of important variable(s), (2) inclusion of superfluous variable(s), (3) adoption of 

the wrong function form, (4) incorrect specification of the error term ui, and (5) errors of 

measurement in the regressand and regressors. 

 

3. When legitimate variables are omitted from a model, the consequences can be very serious: 

The OLS estimators of the variables retained in the model not only are biased but are 

inconsistent as well. Additionally, the variances and standard errors of these coefficients are 

incorrectly estimated, thereby vitiating the usual hypothesis-testing procedures. 

 

4. The consequences of including irrelevant variables in the model are fortunately less serious: 

The estimators of the coefficients of the relevant as well as “irrelevant” variables remain 

unbiased as well as consistent, and the error variance σ2 remains correctly estimated. The only 

problem is that the estimated variances tend to be larger than necessary, thereby making for 

less precise estimation of the parameters. That is, the confidence intervals tend to be larger 

than necessary. 

 

5. To detect equation specification errors, we considered several tests, such as (1) examination 

of residuals, (2) the Durbin–Watson d statistic, (3) Ramsey’s RESET test, and (4) the Lagrange 

multiplier test. 

 

6. A special kind of specification error is errors of measurement in the values of the regressand 

and regressors. If there are errors of measurement in the regressand only, the OLS estimators 

are unbiased as well as consistent but they are less efficient. If there are errors of measurement 

in the regressors, the OLS estimators are biased as well as inconsistent. 

 

7. Even if errors of measurement are detected or suspected, the remedies are often not easy. 

The use of instrumental or proxy variables is theoretically attractive but not always practical. 

Thus it is very important in practice that the researcher be careful in stating the sources of 

his/her data, how they were collected, what definitions were used, etc. Data collected by 



official agencies often come with several footnotes and the researcher should bring those to the 

attention of the reader 

 

 LETS SUM IT UP: 

 

In last, we can say that specification error occurs when an independent variable is correlated 

with the error term. In this process we find appropriate functional form for the model and 

choosing which variables to include. If particular estimated model is mis-specified, it will give 

biased and inconsistent results. 

 

 EXCERCISES : 

 

Consider the model 

 
Yi = β1 + β2X*I + ui 

 
In practice we measure X*Xi such that 

 
a. Xi = X*i+ 5 

 
b. Xi = 3X*i 

 
c. Xi = (X*i+ εi ), where εi is a purely random term with the usual properties 

What will be the effect of these measurement errors on estimates of true 

β1 and β2? 

 
 Suppose that the true model is 

 
Yi = β1Xi + ui (1) 

 
but instead of fitting this regression through the origin you routinely fit the usual intercept- 

present model: 

http://en.wikipedia.org/wiki/Function_(mathematics)


Yi = α0 + α1Xi + vi (2) 

Assess the consequences of this specification error 

 Suppose that the “true” model is 

 
Yi = β1 + β2X2i + ut (1) 

 
but we add an “irrelevant” variable X3 to the model (irrelevant in the sense that the true β3 

coefficient attached to the variable X3 is zero) and 

 

estimate 

 
Yi = β1 + β2X2i + β3X3i + vi (2) 

 
a. Would the R2 and the adjusted R2 for model (2) be larger than that for model (1)? 

 
b. Are the estimates of β1 and β2 obtained from (2) unbiased? 

 
c. Does the inclusion of the “irrelevant” variable X3 affect the variances of ˆ β1 and ˆ β2? 

 
what are the consequences of model specification errors? 

 
What are the various tests used for detecting specification errors? 
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 INTRODUCTION: 

 

In carrying out specification testing, it is useful to distinguish between nested and non-nested 

mode,s. To distinguished between the two, consider the following models: 

 

Model A: Yi = 1 + 2X2i + 3X3i + 4X4i + 5X5i + 

ui Model B: Yi = 1 + 2X2i + 3X3i + ui 

We say that Model B is nested in Model A because it is a special case of Model A: if 

we estimate Model A and test the hyp0othesis that 4 = 5 = 0 and do not reject it on the basis 

of , say, the F test Model A reduces to Model B. If we add variable X4 to Model B, then Model 

A will reduce to Model B if 5 is zero; here we will use the t test tot est the hypothesis that the 

coefficient of X5 is zero. 

 

Without calling them such, the specification error tests we have discussed previously and the 

restricted F are essentially tests of nested hypothesis. 

 

Now consider the following modes: 

 
Model C: Yi = 1 + 2X2i + 3X3i + ui 

Model D: Yi = 1 + 2Z2i + 3Z3i + ui 

Where the X's And Z's are different variables. We say that Models C and D are non-nested 

because one cannot be derived as a special case of the other. In economics, as in other 

sciences, more than one competing theory may explain a phenomenon. Thus the monetarists 

would emphasize the role of money in explaining changes in GDP, whereas the Keynesians 

may explain them by changes in government expenditure. 



It may be noted here that one can allow Model C and D to contain regressors that are common 

to both. For example, X3 could be included in Model D and Z2 could be included in Model C. 

Even then these are non nested models, because Model C does not contain Z3 and Model D 

does not contain X2. 

 

Even if the same variables enter the model, the functional form may make two models non- 

nested. For example, consider the model: 

 

Model E: Yi = 1 + 2InZ2i + 3InZ3i + wi 

 
Models D and E are non-nested, as one cannot be derived as a special case of the other. 

 
Since we already have looked at tests of nested model (t and F tests), in the following section 

we discuss some of the tests of non-nested model, which earlier we called model mis- 

specification errors. 

 

 

 
 OBJECTIVES: 

 

1. The first objective is to distinguish between nested and non-nested models. 

 
2. Understand the model selection criteria for empirical analysis. 

 
3. Detect nested and non-nested models through formal econometric tests. 

 
4. Distinguish among the wide range of available tests for detecting non-nested models. 

 

 

 

 TESTS OF NON-NESTED HYPOTHESES 

 

According to Harvey, there are two approaches to testing non-nested hypotheses: 



(1) the discrimination approach, where given two or more competing models, one chooses a 

model based on some criteria of goodness of fit, and (2) the discerning approach (my 

terminology) where, in investigating one model, we take into account information provided by 

other models. We consider these approaches briefly. 

 

 The Discrimination Approach: 

 

Consider Models C and D above. Since both models involve the same dependent variable, we 

can choose between two (or more) models based on some goodness-of-fit criterion, such as R2 

or adjusted R2, which we have already discussed. But keep in mind that in comparing two or 

more models, the regress and must be the same. Besides these criteria, there are other criteria 

that are also used. These include Akaike’s information criterion (AIC), Schwarz’s 

information criterion (SIC), and Mallows’s Cp criterion. 

 

 The Discerning Approach: 

 

The Non-Nested F Test or Encompassing F Test. Consider Models C and D introduced 

earlier. How do we choose between the two models? For this purpose suppose we estimate the 

following nested or hybrid model: 

 

 

 
Model F: Yi = λ1 + λ2X2i + λ3X3i + λ4Z2i + λ5Z3i + ui 

 

 

 

Notice that Model F nests or encompasses models C and D. But note that C is not nested in D 

and D is not nested in C, so they are non-nested models. 

 

Now if Model C is correct, λ4 = λ5 = 0, whereas Model D is correct if λ2 = λ3 = 0. This testing 

can be done by the usual F test, hence the name non-nested F test. 



However, there are problems with this testing procedure. First, if the X’s and the Z’s are highly 

correlated, then, as noted in the lesson on multicollinearity, it is quite likely that one or more of 

the λ’s are individually statistically insignificant, although on the basis of the F test one can 

reject the hypothesis that all the slope coefficients are simultaneously zero. In this case, we 

have no way of deciding whether Model C or Model D is the correctmodel. Second, there is 

another problem. Suppose we choose Model C as the reference hypothesis or model, and find 

that all its coefficients are significant. Now we add Z2 or Z3 or both to the model and find, 

using the F test, that their incremental contribution to the explained sum of squares (ESS) is 

statistically insignificant. Therefore, we decide to choose Model C. But suppose we  had 

instead chosen Model D as the reference model and found that all its coefficients were 

statistically significant. But when we add X2 or X3 or both to this model, we find, again using 

the F test, that their incremental contribution to ESS is insignificant. Therefore, we would have 

chosen model D as the correct model. Hence, “the choice of the reference hypothesis could 

determine the outcome of the choice model,”33 especially if severe multicollinearity is present 

in the competing regressors. Finally, the artificially nested model F may not have any 

economic meaning. 

 

 Davidson–MacKinnon J Test. 

 

Because of the problems just listed in the non-nested F testing procedure, alternatives have 

been suggested. One is the Davidson–MacKinnon J test. To illustrate this test, suppose we 

want to compare hypothesis or Model C with hypothesis or Model D. The J test proceeds as 

follows: 

 

1. We estimate Model D and from it we obtain the estimated Y values, ˆY Di . 

 
2. We add the predicted Y value in Step 1 as an additional regressor to 

Model C and estimate the following model: 



Yi  = α1 + α2X2i + α3X3i + α4ˆYDi+ ui   (5)    where the ˆYDi values are    

obtained from Step 1. This model is an example of the encompassing principle, as in the 

Hendry methodology. 

 

3. Using the t test, test the hypothesis that α4 = 0. 

 
4. If the hypothesis that α4 = 0 is not rejected, we can accept (i.e., not 

 
reject) Model C as the true model because ˆY Di included in (5), which represent the influence 

of variables not included in Model C, have no additional explanatory power beyond that 

contributed by Model C. In other words, Model C encompasses Model D in the sense that the 

latter model does not contain any additional information that will improve the performance of 

Model C. By the same token, if the null hypothesis is rejected, Model C cannot be the true 

model (why?). 

 

5. Now we reverse the roles of hypotheses, or Models C and D. We now estimate Model C 

first, use the estimated Y values from this model as regressor in (5), repeat Step 4, and decide 

whether to accept Model D over Model C. More specifically, we estimate the following model: 

 

Yi = β1 + β2Z2i + β3Z3i + β4ˆYCi+ ui (6) 

 

 

 

where ˆY Ci are the estimated Y values from Model C. We now test the hypothesis that β4 = 0. 

If this hypothesis is not rejected, we choose Model D over C. If the hypothesis that β4 = 0 is 

rejected, choose C over D, as the latter does not improve over the performance of C. 

 

Although it is intuitively appealing, the J test has some problems. Since the tests given in (5) 

and (6) are performed independently, we have the following likely outcomes 

 

 

 
Hypothesis: α4 = 0 



Hypothesis: β4 = 0 Do not reject Reject 

Do not reject Accept both C and D Accept D, rejectC 

Reject Accept C, reject D Reject both C and D 
 

 

 

 

As this table shows, we will not be able to get a clear answer if the J testing procedure leads to 

the acceptance or rejection of both models. In case both models are rejected, neither model 

helps us to explain the behavior of Y. Similarly, if both models are accepted, as Kmenta notes, 

“the data are apparently not rich enough to discriminate between the two hypotheses 

 

[models].” Another problem with the J test is that when we use the t statistic to test the 

significance of the estimated Y variable in models (5) and (6), the t statistic has the standard 

normal distribution only asymptotically, that is, in large samples. Therefore, the J test may not 

be very powerful (in the statistical sense) in small samples because it tends to reject the true 

hypothesis or model more frequently than it ought to. 

 

 SUMMARY AND CONCLUSIONS: 
 

 

 

 

If errors of measurement are detected or suspected, the remedies 

 
are often not easy. The use of instrumental or proxy variables is theoretically attractive but not 

always practical. Thus it is very important in practice that the researcher be careful in stating 

the sources of his/her data, how they were collected, what definitions were used, etc. Data 

collected by official agencies often come with several footnotes and the researcher should 

bring those to the attention of the reader. Model mis-specification errors can be as serious as 

equation specification errors. In particular, we distinguished between nested and nonnested 

models. To decide on the appropriate model we discussed the nonnested, or encompassing, F 

test and the Davidson–MacKinnon J test and pointed out the limitation of each test. 



 

 

 LETS SUM IT UP: 
 

 

 

 

In concluding remarks, we can say that Model mis- specification errors can lead to various 

equation specification errors. In this lesson, we distinguished between nested and non-nested 

models. Hendry argues several econometric work starts with very simplified models and that 

not enough diagnostic tests are applied to check whether something is wrong with the 

maintained model. His suggested strategy is to start with a very general model and then 

progressively simplify it by some data based simplification tests. 

 

 EXCERCISES: 

 

 Distinguish between nested and non-nested models? 

 
 What is the discrimination approach of non nested hypotheses? 

 
 Elaborate the discerning approach of non nested hypotheses? 

 
 What is Davidson–MacKinnon J Test 
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 INTRODUCTION: 

 

We examined the question of the structural stability of a regression model involving time 

series data and showed how the Chow test can be used for this purpose. Specifically, you may 

recall that in that lesson we discussed a simple savings function savings as a function of 

income) for the United States for the period 1970-1995. There we saw that the savings income 

relationship probably changed around 1982. There we saw that the savings income relationship 

probably changed around 1982. Knowing the point of the structural break we were able to 

confirm it with the Chow test. 

 

But what happens if we do not know the point of the structural break (or breaks)? This is 

where one can use recursive least squares (RELS). 

 

 

 
 OBJECTIVES: 

 

1. The key objective is to find the structural stability of a regression model. 

 
2. Use the Recursive least Squares (RELS) to find the point of structural breaks. 

 
3. Understand the Chow test and how this test can be used for showing structural stability of a 

regression model. 

 

 

 

 

 

 RECURSIVE LEAST SQUARES 



The basic IDEA behind RELS is very simple and can be explained with the saving –income 

regression. 

 

Yt = 1 + 2X1 + u1 

 
Where Y=savings and Z = income and where the sample is for the period 1970-1995. 

 
Suppose we first use the date for 1970-1974 and estimate the savings function, obtaining the 

estimates of 1 and 2. Then we use the data for 1970-1975 and again estimate the savings 

function and obtain the estimates of the two parameters. Then we use the data for 1970-1976 

and re-estimate the savings model. In this fashion we go on adding an additional data point on 

Y and X until we exhaust the entire sample. As you can imagine, each regression run will 

given you a new set of estimates of 1 and 2 If you plot the estimated values of these 

parameters change. If the model under consideration is structurally stable, the changes in the 

estimated values of the two parameters will be small and essentially random. However, if the 

estimated values of the parameters change significantly, it would indicate a structural break. 

RELS is thus a use routine with time series data since time is ordered chronologically. It is also 

a useful diagnostic toll in cross-sectional data where the data are ordered by some “size” or 

“scale” variable, such as the employment or asset size of the firm. 

 

Software packages such as Shazam, Eviews, and microfit now do recursive least-squares 

estimates routinely. RELS also generates recursive residuals on which several diagnostic tests 

have been based. 

 

 CHOW’S PREDICTION FAILURE TEST 
 

 

 

 

Chow has shown that his test can be modified to test the predictive power of a regression 

model. Again, we will revert to the U.S savings-income regression for the period 1970-1995. 



t 

t 

Suppose we estimate the savings-income regression for the period 1970-1981, obtaining 

𝛽̂1,70−81which 𝛽̂2,70−81are the estimated intercept and slope coefficients based on the data for 

1970-1981. Now using the actual value of income for period 1982-1995 and the intercept and 

slope values for the period 1970-1981, we predict the values of savings for each for 1982-1995 

year. The logic here is that if there is no serious structural change in the parameter estimates 

for the earlier period, should not be very different from the actual values of savings prevailing 

in the latter period. Of course, if there is a vast difference between the actual and predicted 

values of savings for the latter period, it will cast doubts on the stability of the savings-income 

relation for the entire data period. 

 

Whether the difference between the actual and estimated savings value is large or small can be 

tested by the F test as follows: 

(û2 û2)/n 
F t t 2 

(ût )/(n1 k) 
 

 

Where n1=Number of observations in the first period (1970-1981) on which the initial 

regression is based n2 number of observations in the second or forecast period û2 RS 

when the equation estimated for all the observation (n1-n2) and û2 RS when the equation 

is estimated for the first n1 observations and k is the number of parameters estimated (two in 

the present instance). 

 

 

 
 SUMMARY AND CONCLUSIONS: 

 

This lesson has discussed the functional form of the regression model.. The final sections of 

the lesson described hypothesis tests designed to reveal whether the assumed model had 

changed during the sample period, or was different for different groups of observations. These 

tests rely on information about when (or how) the sample 

2 



is to be partitioned for the test. In many time series cases, this is unknown.Tests designed for 

this more complex case were considered in this lesson like Recursive least squares (RELS) and 

Chow’s Prediction Failure Test. 

 

 LETS SUM IT UP: 
 

 

 

 

In the concluding remarks, we can say that for showing the structural stability of a regression 

model involving time series data we can use Chow test for this purpose. We also mentioned 

about the Recurssive least squares test for showing the points of structural breaks. 

 

 EXCERCISES: 
 

 

 

 

 State with reason whether the following statements are true or false.† 

 
a. An observation can be influential but not an outlier. 

 
b. An observation can be an outlier but not influential. 

 
c. An observation can be both influential and an outlier. 

 
d. If in the model Yi = β1 + β2Xi + β3Xi+ uiˆ β3 turns out to be statistically significant, we 

should retain the linear term Xi even if ˆ β2 is statistically insignificant. 

 

e. If you estimate the model Yi = β1 + β2X2i + β3X3i + ui or Yi = α1 + β2x2i + β3x3i + ui by 

OLS, the estimated regression line is the same, where x2i = (X2i − ˉX 2) and x3i = (X3i − 

ˉX3). 

 
 Elaborate the Chow’s prediction failure test? 



A regression model with K = 16 independent variables is fit using a panel of seven years of 

data. The sums of squares for the seven separate regressions and the pooled regression are 

shown below. The model with the pooled data allows a separate constant for each year. Test 

the hypothesis that the same coefficients apply in everyyear. 

 

  1954 1955 1956 1957   1958 1959 1960 All 

 

Observations  65 55 87 95 103 87 78 570 

 
e_e 104 88 206 144 199 308 211 1425 

 

Comment on the stability of estimated coefficients 

through examples? 

 Explain the Recursive Least Squares(RELS)? 

 
 Evaluate the following statement made by Henry Theil*: 

 
Given the present state of the art, the most sensible procedure is to interpret confidence 

coefficients and significance limits liberally when confidence intervals and test statistics are 

computed from the final regression of a regression strategy in the conventional way. That is, a 

95 percent confidence coefficient may actually be an 80 percent confidence coefficient and a 1 

percent significance level may actually be a10 percent level. 
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 INTRODUCTION: 

 

Intrinsically linear and intrinsically nonlinear regression models: 

 
Some models may look nonlinear in the parameters but are inherently or intrinsically linear 

because with suitable transformation they can be made linear in the parameter regression 

models. But if such models cannot be linearized in the parameters, they are called intrinsically 

nonlinear regression models. From now on when we talk about a nonlinear regression model, 

we mean that it is intrinsically non linear. For brevity, we will call them NLRM. 

 

But a simple mathematical trick will render it a linear regression model, namely, 

 

in
 1−𝑌𝑖 = 𝛽

 + 𝛽 𝑋 + 𝑢 ----------------1 
𝑌𝑖 

1 2   𝑖 𝑖 

 

Consider now the famous Cobb-Douglas (C-D) production function. Letting Y=output, X2 = 

labor input and X3 = capital input, we will write this function in three different ways: 

Yi = 1𝑋𝛽2𝑋𝛽3𝑒𝑢𝑖------------------------ 2 
2𝑖 3𝑖 

or 

 
InYi  =  + 2𝐼𝑛𝑋2𝑖  + 3𝐼𝑛𝑋3𝑖 +  𝑢𝑖 ----------------------- 2a 

 
Where  = in 1. Thus in this format the C-D function is intrinsically linear. Now consider this 

version of the C-D function. 

Yi = 1𝑋𝛽2𝑋𝛽3𝑢𝑖 ----------------------- 3 
2𝑖 3𝑖 

or 



InYi =  + 2𝐼𝑛𝑋2𝑖 + 3𝐼𝑛𝑋3𝑖 + 𝐼𝑛𝑢𝑖 ------------------------ 3a 

 
Where  = in 1. This model too is linear in the parameters. But now consider the following 

version of the C-D function. 

Yi = 1𝑋𝛽2𝑋𝛽3𝑢𝑖 ---------------------------- 4 
2𝑖 3𝑖 

 
As we just noted, C-D versions (2a) and 3a) are intrinsically linear (in the parameter) 

regression models, but there is no way to transform (4) so that the transformed model can be 

made linear in the parameters.2 Therefore, (4) is intrinsically a nonlinear regression model. 

 
Another well-known but intrinsically nonlinear function is the constant elasticity of 

substitution (CES) production function of which the Cobb Douglas production is a special 

case. The CES production takes the following form: 

 
Yi = A[𝐾−𝛽 + (1 − 𝛿)𝐿−𝛽]-1/


𝑖 𝑖 

 

Where Y= output, K= capital input, L=labour input, A= scale parameter,  = distribution 

parameter (0 <  < 1) and  = substitution parameter (-1). No matter in what form you enter 

the stochastic error term ui in this production function, there is no way to make it a linear (in 

parameter) regression model. It is intrinsically a nonlinear regression model. 

 

 OBJECTIVES: 

 

1. Estimating nonlinear regression models: the trial and error method 

2. Approaches to estimating nonlinear regression models. 

 

 

 

ESTIMATING NONLINEAR REGRESSION MODELS: THE TRIAL AND ERROR 

METHOD 



ie e 

𝑢 

𝑢 

𝑢 

To set the stage, let us consider a concrete example. The data in Table relates to the 

management fees that a leading mutual fund in the United states pays to its investment 

advisors to manage its assets. The fees paid depend on the net asset value of the fund. 

 

To see how the exponential regression model in fits the data, we can proceed by trial and error. 

Suppose we assume that 

 

Initially 1 = 0.45 and 2 = 0.45. These are pure guesses, sometimes based on prior experience 

or prior empirical work or obtained by just fitting a linear regression model even though it may 

not be appropriate. At this stage do not worry about how these values are obtained. 

 

Since we know the values of 1 and 2 we can write (2) as 

ui = Yi -  2Xi = Yi - 45 0.01Xi
 

Therefore 

 

𝑢2 =  (𝑢𝑢 − 0.45𝑢0.01𝑢𝑢)2
 

 

Since Y, X, 1and 2 are known, we can easily find the error sum of squares in (2). Remember 

that in OLS our objective is to find those values of the unknown parameters that will make the 

error sum of squares as small as possible. This will happen if the estimated & values from the 

model are as close as possible to the actual  &  values.  With  the  given  values,  we  

obtain𝑢2 =0.3044 But how do we know that this is the least possible error sum of squares 

that we can obtain.? What happens if you choose another value for 1 and 2 respectively? 

Repeating the procedure just laid down, we find that we now obtain 𝑢2 =0.0073. Obviously, 

this error sum of squares is much smaller than the one obtained before, namely 0.3044. But 

how do we know that we hve reached the lowest possible error sum of squares, for by choosing 

yet another set of values for the 's, we will obtain yet another error sum of squares? 

 

As you can see, such a trial and error, or iterative, process can be easily implemented. And if 

one has infinite time and infinite patience, the trial and error process may ultimately produce 



value 1 and 2 that guarantee the lowest possible error sum of squares. But you might ask, 

how did we go from (1 = 0.45; 2 =0.01) to (1 = 0. 50; 2 = -0.1)? Clearly, we need some 

kind of algorithm that will tell us how we go from one set of values of the unknowns to  

another set before we stop. 

 

 

 
 APPROACHES TO ESTIMATING NONLINEAR REGRESSION MODELS: 

 
There are several approaches, or algorithms, to NLRMs: (1) direct search or trial or error, 

(2)direct optimization, and (3) iterative linearization. 

 

 

 
 Direct Search or Trial-and-Error or Derivative-Free Method 

 
In the previous section we showed how this method works. Although intutitively appealing 

because it doesnot require the use of calculus methods as the other methods do , this method is 

general not used. First, if an NLRM involves several parameters, the method become very 

cumbersome and computationally expensive. For example, if an NLRM involves 5 parameters 

and 25 alternative values for each parameter are considered, you will have to compute the error 

sum of squares (25)5= 9,765,625 times! Second, there is no guarantee that the final set of 

parameter values you have selected will necessarily give you the absolute minimum error sum 

of squares. In the language of calculus, you may obtain a local and not an absolute minimum. 

In fact, no method guarantees a global minimum. 

 

 

 
 Direct Optimization 

 
In direct optimization we differentiate the error sum of squares with respect to each unknown 

coefficient, or parameter, set the resulting equation to zero, and solve the resulting normal 

equations simultaneously. Some iterative routine is therefore called for. One routine is called 



the method of steepest descent. We will not discuss the technical details of this method as they 

are somewhat involved, but the reader can find the details in the references. Like the method of 

rtrial and error, the method of steepest descent also involves selecting initial tral values of the 

unknown parameters but then it proceeds more systematically than the hit-or-miss or trial – 

and-error method. One disadvantage of this method is that it may converge to the final values 

of the parameters extremely slowly. 

 

 Iterative Linearizartion Method 

 
In this method we linearize a nonlinear equation around some initial values of the parameters. 

The linearized equation is then estimated by OLS and the initially chosen values are adjusted. 

These adjusted values are used to relinearize the model, and again we estimate it by OLS and 

readjust the estimated values. This process is continues until there is no substantial change in 

the estimated values from the last couple of iterations. The main technique sued in linearizing a 

nonlinear equation is the Taylor series expansion from calculus. 

 

 SUMMARY AND CONCLUSIONS: 

 

The main points discussed in this lesson can be summarized as follows: 

 
1. Although linear regression models predominate theory and practice there are 

occasions where non linear-in-the-parameter regression models (NLRM) are useful. 

2. The mathematics underlying linear regression models is comparatively simple in that 

one can obtain explicit, or analytical, solutions of the coefficients of such models. 

The small sample and large sample theory of inference of such models is well 

established. 

3. In contrast, for intrinsically nonlinear regression models, parameter values cannot be 

obtained explicitly. They have to be estimated numerically that is, by iterative 

procedures. 



4. There are several methods of obtaining estimates of NLRMs, such as (1) trial and 

error, (2) non linear least squares(NLLS) and (3) Linearizartion through Taylor series 

expansion. 

5. Computer packages now have built-in routines, such as Gauss-Newton, Newton- 

Raphson, and Marquard. These are all iterative routines. 

6. NLLS estimators do not possess optimal properties in finite samples, but in large 

samples they do have such properties. Therefore, the results of NLLS in small 

samples must be interpreted carefully. 

7. Autocorrelation, heteroscedasticity, and model specification problems can plague 

NLRM, as they do liner regression models. 

8. We illustrated the NLLS with several examples. With the ready availability of user 

friendly software packages, estimation of NLRM should no longer be a mystery. 

 

 LETS SUM IT UP: 

 

In this lesson, we extended the regression model to a form which allows nonlinearity in the 

parameters in the regression function. The results for interpretation, estimation, and hypothesis 

testing are quite similar to those for the linear model. The two crucial differences between the 

two models are, first, the more involved estimation procedures needed for the nonlinear model 

and, second, the ambiguity of the interpretation of the coefficients in the nonlinear model 

(since the derivatives of the regression are often nonconstant, in contrast to those in the linear 

model.) Finally, we added two additional levels of generality to the model. A nonlinear 

instrumental variables estimator is suggested to accommodate the possibility that the 

disturbances in the model are correlated with the included variables. In the second application, 

two-step nonlinear least squares is suggested as a method of allowing a model to be fit while 

including functions of previously estimated parameters. 

 

 

 
 EXCERCISES: 



Q1 What is under fitting the model ? 

 
Q2 describe discerning approach for testing non-nested models. 

Q3 describe davidson mackinnon J test. 

Q4 what is meant by intrinsically linear models? 

Q5 describe recursive least square regression. 

Q6 discuss miss specification and its remedies. 
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 INTRODUCTION: 

 

In statistics and econometrics, particularly in regression analysis, a dummy variable (also 

known as an indicator variable, design variable, Boolean indicator, categorical variable, binary 

variable, or qualitative variable) is one that takes the value 0 or 1 to indicate the absence or 

presence of some categorical effect that may be expected to shift the outcome. Dummy 

variables are used as devices to sort data into mutually exclusive categories (such as 

smoker/non-smoker, etc.). 

 

 OBJECTIVES: 

 

1. Understand the concept of dummy variables. 

 
2. To understand the ANOVA(Analysis of Variance) models. 

 
3. To understand the ANCOVA(Analysis of Covariance) models. 

 
 ANOVA Model : 

 

A regression model in which the dependent variable is quantitative in nature but all the 

explanatory variables are dummies (qualitative in nature) is called an Analysis of Variance 

(ANOVA) model. 

 

 

 
 ANCOVA Model : 

 

A regression model that contains a mixture of both quantitative and qualitative variables is 

called an Analysis of Covariance (ANCOVA) model. ANCOVA models are extensions of 

ANOVA models. They are statistically control for the effects of quantitative explanatory 

variables (also called covariates or control variables). 

 

1.3 . 1 ANOVA MODELS: 

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Econometrics
http://en.wikipedia.org/wiki/Regression_analysis
http://en.wikipedia.org/wiki/Mutually_exclusive_events
http://en.wikipedia.org/wiki/Analysis_of_covariance


To illustrate the ANOVA models, consider the following example. 

 
Example 1.1 

 
PUBLIC SCHOOL TEACHERS’ SALARIES BY GEOGRAPHICAL 

REGION 

 

Table 1.1 gives data on average salary (in dollars) of public school teachers in 50 states 

and the District of Columbia for the year 1985. These 51 areas are classified into three 

geo- graphical regions: (1) Northeast and North Central (21 states in all), (2) South (17 

states in all), and (3) West (13 states in all). For the time being, do not worry about the 

format of the table and the other data given in the table. 

 

Suppose we want to find out if the average annual salary (AAS) of public school teachers 

differs among the three geographical regions of the country. If you take the simple arith- 

metic average of the average salaries of the teachers in the three regions, you will find that 

these averages for the three regions are as follows: $24,424.14 (Northeast and North Cen- 

tral), $22,894 (South), and $26,158.62 (West). These numbers look different, but are they 

statistically different from one another? There are various statistical techniques to compare 

two or more mean values, which generally go by the name of analysis of variance. But the 

same objective can be accomplished within the framework of regression analysis. 

 

EXAMPLE 1 

 

 

 

TABLE 1 AVERAGE SALARY OF PUBLIC SCHOOL 

TEACHERS, BY STATE, 1986 

 

 

 

 

Salary Spending D 

2 

D3 Salary Spending D 

2 

D 

3 



19,583 334 1 0 22,795 336 0 1 

20,263 311 1 0 21,570 292 0 1 

20,325 355 1 0 22,080 298 0 1 

26,800 464 1 0 22,250 373 0 1 

29,470 466 1 0 20,940 285 0 1 

26,610 488 1 0 21,800 253 0 1 

30,678 571 1 0 22,934 272 0 1 

27,170 553 1 0 18,443 230 0 1 

25,853 416 1 0 19,538 264 0 1 

24,500 354 1 0 20,460 312 0 1 

24,274 315 1 0 21,419 275 0 1 

27,170 362 1 0 25,160 342 0 1 

30,168 378 1 0 22,482 394 0 0 

26,525 424 1 0 20,969 250 0 0 

27,360 398 1 0 27,224 544 0 0 

21,690 356 1 0 25,892 404 0 0 

21,974 315 1 0 22,644 340 0 0 

20,816 305 1 0 24,640 282 0 0 

18,095 296 1 0 22,341 229 0 0 

20,939 328 1 0 25,610 293 0 0 

22,644 391 1 0 26,015 370 0 0 

24,624 451 0 1 25,788 412 0 0 

27,186 434 0 1 29,132 360 0 0 

33,990 502 0 1 41,480 834 0 0 

23,382 359 0 1 25,845 376 0 0 

20,627 282 0 1     

 

Note: D2 = 1 for states in the Northeast and North Central; 0 

otherwise. 

 

D3 = 1 for states in the South; 0 otherwise. 



To see this, consider the following model: 

 
Yi = β1  + β2D2i  + β3i D3i + ui (1) 

 
where Yi = (average) salary of public school 

teacher in state i 

 

D2i = 1 if the state is in the Northeast or North Central 

 
= 0 otherwise (i.e., in other regions of the country) 

 
D3i = 1 if the state is in the South 

 
= 0 otherwise (i.e., in other regions of the country) 

 

 

 

 

Note that (1) is like any multiple regression model considered previously, except that, 

instead of quantitative regressors, we have only qualitative, or dummy, regressors, taking 

the value of 1 if the observation belongs to a particular category and 0 if it does not 

belong to that category or group. Hereafter, we shall  designate  all  dummy variables  

by the letter D. Table 1.1 shows the dummy variables thus constructed. 

 

What does the model tell us? Assuming that the error term satisfies the usual OLS assumptions, 

on taking expectation of (1) on both sides, we obtain: 

 

Mean salary of public school teachers in the Northeast and North Central: 

 
E(Yi |  D2i =  1,  D3i =   0)  =  β1 + β2 

(2) 

 
Mean salary of public school teachers in the South: 



E(Yi  |  D2i  =  0,  D3i  =  1) = β1 + β3 

(3) 

 

 

 

You might wonder how we find out the mean salary of teachers in the West. If you 

guessed that this is equal to β1 , you would be absolutely right, for 

 
Mean salary of public school teachers in the West: 

 

 

 

E(Yi |  D2i = 0,  D3i = 0)   = β1 

(4) 

 

 

 

In other words, the mean salary of public school teachers in the West is given by the 

inter- cept, β1, in the multiple regression (1), and the “slope” coefficients β2 and β3 tell 

by how much the mean salaries of teachers in the Northeast and North Central and in the 

South differ from the mean salary of teachers in the West. But how do we know if these 

differences are statistically significant? Before we answer this question, let us present 

the results based on the regression (1). Using the data given in Table 1, we obtain the 

following results: 

 

Ŷ i   = 26,158.62 − 1734.473D2i 

− 3264.615 
 

 

 

 

se = (1128.523) (1435.953) 

(1491.615) 

(5) 



 

0 2 0 

 

where * indicates the p 

values. 

 
As these regression results show, the mean salary of teachers in the West is about 

 
$26,158, that of teachers in the Northeast and North Central is lower by about $1734, and 

that of teachers in the South is lower by about $3265. The actual mean salaries in the last 

two regions can be easily obtained by adding these differential salaries to the mean salary 

of teachers in the West, as shown in Eqs. (3) and (4). Doing this, we will find that the 

mean salaries in the latter two regions are about $24,424 and $22,894. 

 

But how do we know that these mean salaries are statistically different from the mean 

salary of teachers in the West, the comparison category? That is easy enough. All we have 

to do is to find out if each of the “slope” coefficients’ in (5) is statistically significant. As 

can be seen from this regression, the estimated slope coefficient for Northeast and North 

Central is not statistically significant, as its p value is 23 percent, whereas that of the South 

is statistically significant, as the p value is only about 3.5 percent. Therefore, the overall 

conclusion is that statistically the mean salaries of public school teachers in the West and 

the Northeast and North Central are about the same but the mean salary of teachers in the 

South is statistically significantly lower by about $3265. 

 

A caution is in order in interpreting these differences. The dummy variables will simply 

point out the differences, if they exist, but they do not suggest the reasons for the 

differences. 

 

1.5 CAUTION IN THE USE OF DUMMY VARIABLES: 

 

(The dummy variable trap) 

 
Although they are easy to incorporate in the regression models, one must use the 

dummy variables carefully. In particular, consider the following aspects: 
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(0. 000 (0. 330) (0. 349 R2 = 

 



1. In Example 1, to distinguish the three regions, we used only two dummy 

variables, D2 and D3. Why did we not use three dummies to distinguish the three 

regions? Suppose we do that and write the model (1) as: 

 

 

 
Yi  = α + β1 D1i + β2 D2i + β3 D3i + ui (6) 

 

 

 
where D1i takes a value of 1 for states in the West and  0 otherwise.  Thus, we now 

have a dummy variable for  each  of  the  three  geographical regions. Using  the  data 

in Table 1, if you were to run the regression (6), the com- puter will “refuse” to run the 

regression (try it). Why? The reason is that in the setup of (6) where you have a 

dummy variable for each category or group and  also  an  intercept, you  have  a case 

of perfect collinearity, that is, exact linear relationships among the variables. Why? 

Refer to Table 1. Imagine that now we add the D1 column, taking the value of 1 

whenever a state is in the West and 0 otherwise. Now if you add the three D columns 

hor- izontally, you will obtain a column that has 51 ones in it. But since the  value of 

the intercept α is (implicitly) 1 for each observation,  you  will have a column 

that also contains 51 ones. In other words, the sum of the three D columns will 

simply reproduce the intercept column, thus leading to perfect collinearity.  In  this 

case, estimation of the model (6) is impossible. 

 

The message here is: If a  qualitative  variable has m categories, intro- duce only 

(m − 1) dummy variables. In our example, since the qualitative variable  “region” 

has three categories, we introduced only two dummies. If you do not follow  this 

rule, you will fall into what is called the dummy vari- able trap, that is, the 

situation of perfect collinearity or perfect multi- collinearity,  if  there  is more 

than one exact relationship among the vari- ables. This rule also applies if we 

have more than one qualitative variable in the model, an example of which is 

presented later. Thus we should restate the preceding rule as: For each 
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qualitative regressor the number of dummy variables introduced must be one 

less than the categories of that variable. Thus, if in Example 1 we had 

information about the gender  of the teacher,  we would use an additional 

dummy variable (but not two) taking a value of 1 for female and 0 for male or 

vice versa. 

 

2. The category for which no dummy variable is assigned is known as the base, 

benchmark, control, comparison, reference, or omitted cate- gory. And all 

comparisons are made in relation to the benchmark category. 

 

3. The intercept value (β1) represents the mean value of the benchmark 

category. In Example 1, the  benchmark  category is  the  Western  region. Hence,  

in the regression (5) the intercept value of about 26,159 repre- sents the mean 

salary of teachers in the Western states. 

 

4. The coefficients attached to the dummy variables in (1) are known as the 

differential intercept  coefficients  because they tell by how much the value of 

the intercept that receives the value of 1 differs from the  inter- cept  coefficient of 

the benchmark category. For example, in (1.2.5), the value of about −1734 tells us 

that the mean salary of teachers in the Northeast or North Central is smaller by  

about $1734 than the mean salary of about 

 

$26,159 for the benchmark category, the 

West. 

 

5. If a qualitative variable has more than one category, as in our illus- trative 

example, the choice of the benchmark category is strictly up to the researcher. 

Sometimes the choice of the benchmark is dictated by the   par- ticular  problem 

at hand. In our illustrative example, we could have chosen the South as the 

benchmark category. In that case the regression results given in (5) will change, 

because now all comparisons are made in rela- tion to the  South. Of  course, this 

will not change the overall conclusion of our example (why?). In this case, the 
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intercept value will be about $22,894, which is the mean salary of teachers in the 

South 

 

 

 
6. We warned above about the dummy variable trap. There is a way to circumvent 

this trap by introducing as many dummy variables as the num- ber of  categories of 

that variable, provided we do not introduce the intercept in such a model. Thus, if we 

drop the intercept term from (.6), and con- sider the following model, 

 

 

 
Yi  = β1 D1i  + β2 D2i + β3 D3i + ui (7) 

 

 

 
we do not fall into  the  dummy  variable  trap,  as  there  is  no  longer  perfect  

collinearity. But make sure that when  you  run  this  regression,  you  use  the  no- 

intercept option in your regression package. 

 

How do we interpret regression (7)? If  you  take  the  expectation  of(7), you  will  find  

that: 

 

 

 
β1 = mean salary of teachers in the West 

 
β2 =  mean  salary of  teachers  in  the Northeast and North 

Central. 

 

β3 = mean salary of teachers in the South. 
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In other words, with the intercept suppressed, and allowing a dummy variable for each 

category, we obtain directly the mean values of the various categories. The results of 

(7) for our illustrative example are as follows: 

 

 

 

Yˆi = 26,158.62D1i + 24,424.14D2i + 22,894D3i 
 

 

 
 
 

se = (887.9170) (986.8645) (8) 

t = (27.5072) (23.1987)*  

 

R2 = 0.0901 

 

 
 

where * indicates that the p values of these t ratios are very small. 

 
As you  can  see,  the  dummy  coefficients give  directly  the  mean  (salary)  val- ues  in 

the three regions, West, Northeast and North Central, and South. 

 

 

 
6. Which is a better method of introducing a dummy variable: (1) intro- duce a 

dummy for each category and omit the intercept term or (2) include the 

intercept term and introduce only (m − 1) dummies,  where  m is the 

number of categories of the dummy variable: 

 

 

 
1.7 SUMMARY AND CONCLUSIONS: 

 

In summary we can state the Qualitative response regression models refer to models in which the 

response, or  regressand, variable is not quantitative or an interval scale.. The simplest possible 
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qualitative response regression model is the binary model in which the regressand is of the 

yes/no or presence/absence type. We distinguished between the ANOVA and ANCOVA . 

 

 

 

 

 

 
 

 LETS SUM IT UP: 

 

In concluding remarks, we can say that ANOVA and ANCOVA are used for analyzing the 

regression models which are qualitative in nature. 

 

 

 
 EXCERCISES: 

 

What do mean by dummy variables? 

 
Explain the Analysis of Variance (ANOVA) ? 

 
Elaborate the Analysis of Covariance(ANCOVA)? 

 
What are the various cautions which should be adopted in the use of dummy variables? 

 
 Give an example of ANOVA and ANCOVA models ? 
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 INTRODUCTION: 

 

In all the regression models that we have considered so far, we have implicitly assumed that the 

regressand, the dependent variable, or the response variable Y is quantitative, whereas the 

explanatory variables are either quantitative, qualitative (or dummy), or a mixture thereof. In 

fact, in previous Lesson, on dummy variables, we saw how the dummy regressors are introduced 

in a regression model and what role they play in specific situations. In this lesson we consider 

several models in which the regressand itself is qualitative in nature. Although increasingly used 

in various areas of social sciences and medical research, qualitative response regression models 

pose interesting estimation and interpretation challenges. In this lesson we only touch on some of 

the major themes in this area. 

 

 

 
 OBJECTIVES: 

 

1. Understand the concept of Linear Probability model(LPM). 

 
2. The another objective is to understand the various problems posed by the Linear Probability 

model(LPM). 

 

 

 
 THE LINEAR PROBABILITY MODEL (LPM): 

 

To fix ideas, consider the following regression model: 

Yi = 1 + 2Xi + ui ------------------------ 1 

Where X = family income and Y =1 if the family owns a house and 0 if it does not own a house. 

Model looks like a typical linear regression model but because the regress and is binary, or 

dichotomous, it is called a linear probability model (LPM). This is because the conditional 

expectation of Yi given Xi, E(Yi/Xi), can be interpreted as the conditional probability that the 
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event will occur given Xi that is, Pr (Yi = 1/Xi) Thus, in our example, E(Yi/Xi) Gives the 

probability of a family owning a house and whose income is the given amount Xi. 

The justification of the name LPM for model like (1) can be seen as follows: Assuming E(ui) = 0 

usual (to obtain unbiased estimators) we obtain. 

E(Yi/Xi) = 1 + 2Xi -------------------- 2 

Now, if Pi = probability that Yi =1 (that is, the event occurs), and (1-Pi) = probability that Yi = 0 

(that is, that the event does not occur), the variable Yi has the following (probability) 

distribution. 

  i 

Yi Probability 

 
0 1-Pi 

 
1 Pi 

 
Total 1 

 

 

 

 

That is Yi follows the Beronoulli probability distribution. 

Now, by the definition of mathematical expectation, we obtain. 

E(Yi) = 0(1-Pi) + 1 (Pi) = Pi ----------------- 3 

Comparing (2) with (3.), we can equate 

E(Yi/Xi) = 1 + 2Xi = Pi --------------------- 4 
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That is, the conditional expectation of the model can, in fact, be interpreted as the conditional 

probability of Yi in general, the expectation of a Bernoulli random variable is the probability that 

the random variable equals 1. In passing note that if there are n independent trials, each with a 

probability p of success and probability (1-p) of failure, and X of these trials represent the 

number of successes then X is said to follow the binomial distribution. The mean of the binomial 

distribution is np and its variance is m (1-p). The term success is defined in the context of the 

problem. 

Since the probability Pi must lie between 0 and 1, we have the restriction. 

0 E (Yi/Xi)  1 ------------------ 5 

That is, the conditional expectation (or conditional probability) must lie between 0 and 1. 

 
From the preceding discussion it would seem that OLS can be easily extended to binary 

dependent variable regression models. So, perhaps there is nothing new here. Unfortunately, this 

is not the case, for the LPM poses several problems, which are as follows: 

 

 Non-Normality of the Disturbances ui: 

 
Although OLS does not require the disturbances (ui) to be normally distributed, we assumed 

them to be so distributed for the purpose of statistical inference. But the assumption of normality 

for ui is not tenable for the LPMs because, like Yi, the disturbances ui also take only two values; 

that is, they also follow the Bernoulli distribution. This can be seen clearly if we write equation 

(1) as 

 

 

 

ui = Yi − β1 − β2Xi ------------ (6) 

 
The probability distribution of ui is 

 
  ui Probability 
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When Yi =1 1− β1 − β2 Xi Pi 

 

 

 

When Yi = 0 −β1 − β2Xi (1 − Pi ) ----------- (7) 

 

Obviously, ui cannot be assumed to be normally distributed; they follow the Bernoulli 

distribution. But the nonfulfillment of the normality assumption may not be so critical as it 

appears because we know that the OLS point estimates still remain unbiased (recall that, if the 

objective is point estimation, the normality assumption is not necessary). Besides, as the sample 

size increases indefinitely, statistical theory shows that the OLS estimators tend to be normally 

distributed generally.As a result, in large samples the statistical inference of the LPM will follow 

the usual OLS procedure under the normality assumption. 

 

 

 
2.5 Heteroscedastic Variances of the Disturbances: 

 

 

 

 

Even if E(ui) = 0 and cov (ui , uj ) = 0 for i _= j (i.e., no serial correlation), it can no longer be 

maintained that in the LPM the disturbances are homoscedastic. This is, however, not surprising. 

As statistical theory shows, for a Bernoulli distribution the theoretical mean and variance are, 

respectively, p and p(1 − p), where p is the probability of success (i.e., something happening), 

showing that the variance is a function of the mean. Hence the error variance is heteroscedastic. 

 

For the distribution of the error term given in (7), applying the definition of variance, the reader 

should verify that 

 

 

 
var (ui) = Pi(1 − Pi) -------- (8) 
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That is, the variance of the error term in the LPM is heteroscedastic. Since Pi = E(Yi | Xi) = β1 

+ β2Xi , the variance of ui ultimately depends on the values of X and hence is not homoscedastic. 

 

 

 

We already know that, in the presence of heteroscedasticity, the OLS estimators, although 

unbiased, are not efficient; that is, they do not have minimum variance. But the problem of 

heteroscedasticity, like the problem of non-normality, is not insurmountable. In Lesson 11 we 

discussed several methods of handling the heteroscedasticity problem. Since the variance of ui 

depends on E(Yi | Xi ), one way to resolve the heteroscedasticity problem is to transform the 

model (1) by dividing it through by 

 

 

 
√E(Yi/Xi) [1 − E(Yi/Xi)] = √Pi (1 − Pi) = say √wi 

 
that is, 

 

 

 

Yi / √  wi  = √β1 / wi+ β2Xi  / √wi+ ui / √wi ------------ (9) 

 

 

 

As you can readily verify, the transformed error term in (9) is homoscedastic. 

 
Therefore, after estimating (1), we can now estimate (9) by OLS, which is nothing but the 

weighted least squares (WLS) with wi serving as the weights. 
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In theory, what we have just described is fine. But in practice the true E(Yi | Xi) is unknown; 

hence the weights wi are unknown. To estimate wi , we can use the following two-step 

procedure: 

 

 

 
Step 1. Run the OLS regression (1) despite the heteroscedasticity problem and obtain ˆYi = 

estimate of the true E(Yi | Xi). Then obtain 

 

wiˆ =ˆYi(1−ˆYi), the estimate of wi. 

 

 

 

Step 2. Use the estimated wi to transform the data as shown in (9) 

 
and estimate the transformed equation by OLS (i.e., weighted least squares). 

 

 

 

2.6 Nonfulfillment of 0 ≤ E(Yi | X) ≤ 1 
 

 

 

 

Since E(Yi | X) in the linear probability models measures the conditional probability of the event 

Y occurring given X, it must necessarily lie between 0 and 1. Although this is true a priori, there 

is no guarantee that ˆYi , the estimators of E(Yi | Xi ), will necessarily fulfill this restriction, and 

this is the real problem with the OLS estimation of the LPM. There are two ways of finding out 

whether the estimated ˆYi lie between 0 and 1. One is to estimate the LPM by the usual OLS 

method and find out whether the estimated ˆYi lie between 0 and 1. If some are less than 0 (that 

is, negative), ˆYi is assumed to be zero for those cases; if they are greater than 1, they are 

assumed to be 1. 
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The second procedure is to devise an estimating technique that will guarantee that the estimated 

conditional probabilities ˆYi will lie between 0 and 1. The logit and probit models discussed later 

will guarantee that the estimated probabilities will indeed lie between the logical limits 0 and 1. 

 

 

 
 SUMMARY AND CONCLUSIONS: 

 

 

 

 

In summary, we can say that the simplest possible binary regression model is the linear 

probability model (LPM) in which the binary response variable is regressed on the relevant 

explanatory variables by using the standard OLS methodology. 

 

Simplicity may not be a virtue here, for the LPM suffers from several estimation problems. Even 

if some of the estimation problems can be overcome, the fundamental weakness of the LPM is 

that it assumes that the probability of something happening increases linearly with the level of 

the regressor. This very restrictive assumption can be avoided if we use the logit and probit 

models. 

 

 

 
 LETS SUM IT UP: 

 

 

 

 

In the concluding remarks we can say that in the regression model if the regressand is binary, or 

dichotomous ,we call that particular model , Linear probability model. 

 

 EXCERCISES: 
 

 

 

 

Q.1 What do you mean by linear probability mode(LPM)? 
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What are the various problems which LPM faces in the estimation? 

 
What are the various weaknesses of the LPM? 

 
In studying the purchase of durable goods Y (Y = 1 if purchased, Y = 0 if no purchase) as a 

function of several variables for a total of 762 households, Janet A. Fisher*obtained the 

following LPM results: 

 

TABLE 3 : 

 

Explanatory variable Coefficient Standard error 

 

Constant 0.1411 — 

1957 disposable income, X1 0.0251 0.0118 

(Disposable income = X1)2, X2 − 0.0004 0.0004 

Checking accounts, X3 −0.0051 0.0108 

Savings accounts, X4 0.0013 0.0047 

U.S. Savings Bonds, X5 −0.0079 0.0067 

Housing status: rent, X6 −0.0469 0.0937 

Housing status: own, X7 0.0136 0.0712 

Monthly rent, X8 −0.7540 1.0983 

Monthly mortgage payments, 

X9 −0.9809 0.5162 

Personal noninstallment debt 
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, X10 −0.0367 0.0326 

Age, X11 0.0046 0.0084 

Age squared, X12 −0.0001 0.0001 

Marital status, 
  

X13 (1 = married) 0.1760 0.0501 

Number of children, X14 0.0398 0.0358 

(Number of children = X14)2, 
  

X15 −0.0036 0.0072 

Purchase plans, X16 
  

(1 = planned; 0 otherwise) 0.1760 0.0384 

 
R2 = 0.1336 

 
Notes: All financial variables are in thousands of dollars. 

Housing status: Rent (1 if rents; 0 otherwise) 

Housing status:Own(1 if owns; 0 otherwise) 

 
a. Comment generally on the fit of the equation. 

 
b. How would you interpret the coefficient of −0.0051 attached to 

checking account variable? How would you rationalize the negative 

sign for this variable? 

c. What is the rationale behind introducing the age-squared and number 
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of children-squared variables? Why is the sign negative in both cases? 

 
d. Assuming values of zero for all but the income variable, find out the conditional probability of 

a household whose income is $20,000 purchasing a durable good. 

 

 

 
e. Estimate the conditional probability of owning durable good(s), given: 

 
X1 = $15,000, X3 = $3000, X4 = $5000, X6 = 0, X7 = 1, X8 = $500, X9=$300, X10 = 0, X11 = 

35, X13 = 1, X14 = 2, X16 = 0. 

 

The R2 value in the labor-force participation regression given in Table 3 is 0.175, which is rather 

low. Can you test this value for statistical significance? Which test do you use and why? 

Comment in general on the value of R2 in such models. 

 

 Describe LPM and its limitations, in detail. 
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3.1 INTRODUCTION: 

 

As we have seen, the LPM is plagued by several problems, such as (1) nonnormality of ui , (2) 

heteroscedasticity of ui , (3) possibility of ˆYi lying outside the 0–1 range, and (4) the generally 

lower R2 values. But these problems are surmountable. For example, we can use WLS to resolve 

the heteroscedasticity problem or increase the sample size to minimize the non-normality 

problem. By resorting to restricted least-squares or mathematical programming techniques we 

can even make the estimated probabilities lie in the 0–1 interval. 

 

But even then the fundamental problem with the LPM is that it is not logically a very attractive 

model because it assumes that Pi = E(Y = 1 | X) increases linearly with X, that is, the marginal or 

incremental effect of X remains constant throughout. Thus, in our home ownership example we 

found that as X increases by a unit ($1000), the probability of owning a house increases by the 

same constant amount of 0.10. This is so whether the income level is $8000, $10,000, $18,000, 

or $22,000. This seems patently unrealistic. In reality one would expect that Pi is nonlinearly 

related to Xi : 

 

At very low income a family will not own a house but at a sufficiently high level of 

income, say, X*, it most likely will own a house. Any increase in income beyond X* will have 

little effect on the probability of owning a house. Thus, at both ends of the income distribution, 

the probability of owning a house will be virtually unaffected by a small increase in X.  

Therefore, what we need is a (probability) model that has these two features: (1) As Xi increases, 

Pi = E(Y = 1 | X) increases but never steps outside the 0–1 interval, and (2) the relationship 

between Pi and Xi is nonlinear, that is, “one which approaches zero at slower and slower rates as 

Xi gets small and approaches one at slower and slower rates as Xi gets very large.’’ 

 

The reader will realize that the sigmoid, or S-shaped, curve very much resembles the  

cumulative distribution function (CDF) of a random variable. Therefore, one can easily use the 

CDF to model regressions where the response variable is dichotomous, taking 0–1 values. The 

practical question now is, which CDF? For although all CDFs are S shaped, for each random 
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variable there is a unique CDF. For historical as well as practical reasons, the CDFs commonly 

chosen to represent the 0–1 response models are (1) the logistic and (2) the normal, the former 

giving rise to the logit model and the latter to the probit (or normit) model. 

 

 OBJECTIVES: 

 

1. The key objective is to understand different alternative models to LPM. 

 
2. Understand the LOGIT model. 

 
3. Understand the PROBIT model. 

 
 THE LOGIT MODEL: 

 

Pi = E(Y = 1/Xi) = 1 + 2Xi-------------------- 1 

Where X is income and Y -1 means the family owns a house. But now consider the following 

representation of home ownership: 

Pi = E(Y = 1/Xi) = 1 
1+𝑒

−(𝛽1+𝛽2𝑋𝑖) 
-------------------2 

For ease of exposition, we write (2) as 

Pi = 1 
1+𝑒−𝑍1 

=  
𝑒𝑧 

1+ 𝑒𝑧 
---------------------------------3 

 
Where Zi = 1 + 2Xi 

 
Equation 3 represent what is known as the cumulative logistic distribution function. 

 
It is easy to verify that as Zi ranges from -  to + , Pi Ranges between 0 and 1 and that Pi is 

nonlinearly related to Zi (i.e. Xi )Thus satisfying the two requirements considered earlier. But it 

seems that in satisfying these requirements, we have created an estimation problem because Pi is 

nonlinear not only in X but also in the 's as can be seen clearly from (2). This means that we 
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cannot use the familier OLS procedure to estimate the parameters. But this problems is more 

apparent than real because (2) can be linearized, which can be shown as follows. 

 

If Pi the probability fo owning a house, is given by (3) then (1-Pi), the probability of not owning 

a house, is 

 

1 - Pi = 1 
1 + 𝑒−𝑍1 

---------------------------4 

 

Therefore, we can write 

 

     =  
1+ 𝑒𝑍𝑖 = 𝑒𝑍𝑖 -------------------------------5 

1− 𝑃𝑖 1+ 𝑒−𝑍𝑖 

 

Now Pi/(1 - Pi) is simply the odds ratio in favor of owning a house- the ratio of the probability 

that a family will own a house to the probability that it will not own a house. Thus if P i = 0.8, it 

means that odds are 4 to 1 in favour of the family owning a house. 

 

Now if we take the natural log of (5) we obtain a very interesting result, namely 

 

Li =𝐼𝑛
 𝑃𝑖 = 𝑍 6 

1− 𝑃𝑖 
𝑖 

 
= 1 + 2Xi 

 
That is, L, the log of the odds ratio, is not only linear in X, but also (from the estimation 

viewpoint0 linear in the parameters. L is called the logit, and hence the name logit model for 

models like (6) Notice these features of the logit model. 

 

1. As P goes from 0 to 1 (i.e. as Z varies from -  to + ), the logit L goes from -  to + . 

That is, although the probabilities (of necessity) lie between 0 and 1, the logits are not so 

bounded. 

2. Although l is linear in X, the probabilities themselves are not. This property is in contrast 

with the LPM model (1) where the probabilities increase linearly with X. 

3. Although we have included only a single X variable, or regressor, in the preceding 

model, one can add as many regressors as may be dictated by the underlying theory. 
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4. If L, the logit, is positive, it means that when the value of the regressor(s) increases, the 

odds that the regress and equals 1 (meaning some event of interest happens) increases. If 

L is negative, the odds that the regress and equal 1 decreases as the value of X increases. 

To put it differently, the logit becomes negative and increasingly large in magnitude as 

the odds ratio decreases from 1 to 0 and becomes increasingly large and positive as the 

odds ratio increases from 1 to infinity. 

5. More formally, the interpretation of the logit model given in (6) is as follows: 2, the 

slope, measures the change in L for unit change in X, that is, it tells how the log – odds  

in favor of owning a house change an income changes by a unit, say $ 1000. The 

intercept 1 is the value of the log odds in favour of owning a house if income is zero. 

Like most interpretations of intercepts, this interpretation may not have any physical 

meaning. 

6. Given a certain level of income, say, X, if we actually want to estimate not the odds in 

favor of owning a house but the probability of owning a house itself, this can be done 

directly from (3) once the estimate of 1 + 2 are available. This, however, raises the most 

important question. How do we estimate 1 and 2 in the first place? The answer is given 

in the next section. 

7. Whereas the LPM assumes that Pi is linearly related to Xi the logit model assumes that 

the log of the odds ratio is linearly related to Xi. 
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𝑖 

𝑖 

𝑖 

3.4 THE PROBIT MODEL 
 

 

The estimating model that emerges from the normal CDF is popularly normit model. 

To motivate the probit model, assume that in our home ownership example the decision of the ith 

Family to own a house or not depends on an unobservable utility index Ii(also known as a latent 

variable), that is determined by one or more explanatory variables, say income Xi in such a way 

that the larger the value of the index Ii The greater the probability of a family owning a house. 

We express the index Ii as. 

Ii = 1 + 2Xi---------------------------1 

Where Xi is the income of the ith Family. 

How is the (unobservable0 index relaterd to the actual decision to own a house? As  before  let Y 

= 1if the family owns a house and Y = 0 if it does not. Now it is reasonable to assume that there 

is a critical or threshold level of the index, call it 𝐼∗such that if Ii exceeds 𝐼∗, the family  will own 
𝑖 𝑖 

a house, otherwise it will not. The threshold 𝐼∗Like Ii is not observable, but if we assume that it is 

normally distributed with the same mean and variance, it is possible not only to estimate the 

parameters of the index given in (1). But also to get some information about the unobservable 

index itself. This calculation is also follows. 

Given the assumption of normality, the probability that 𝐼∗ is less than or equal to Ii can be 

computed from the standardized normal CDF as. 

Pi = P(Y=1/X) = P (𝐼∗  Ii) = P(Zi  1 +2Xi) = F (1 +2Xi) --------------------- 2 

Where P(Y = 1/X) means the probability that an event occurs given the value(s) of the X, or 

explanatory, variable(s) and where Zi is the standard normal variable, i.e. Z  N (0-2). F is the 

standard normal CDF, which written explicitly in the present context is: 

F(I ) = 1 𝐼𝑖 𝑒−𝑧
2/2 

𝑑𝑧 3 
i 

√2𝜋 
∫−∞ 

=
 1 𝑖+2𝑋𝑖 𝑒−𝑧2/2 

𝑑𝑧
 

 

√2𝜋 
∫−∞ 

Since P represents the probability that 

 

an event will occur, here the probability of owning a 

house, it is measured by the area of the standard normal curve from   as shown in Figure. 
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𝑖 

 
 

 
 

 

Now to obtain information, in Ii the utility index, as well as𝑖 𝑎𝑛𝑑 2, we take the inverse of (2) 

to obtain. 

Ii = F-1(Ii ) = F-1(Pi ) 4 

= 𝑖 + 2𝑋𝑖 

Where F-1 is the inverse of the normal CDF. What all this means can be made clear from Figure 

in panel a of this figure we obtain from the ordinate the (cumulative) probability of owning a 

house given 𝐼∗ 𝐼𝑖 whereas in panel b we obtain from the abscissa the value of Ii Given the value 

of Pi which is simply the reverse of the former. 

 
3.5 SUMMARY AND CONCLUSIONS: 

 

In the logit model the dependent variable is the log of the odds ratio, which is a linear function of 

the regressors. The probability function that underlies the logit model is the logistic distribution. 

If the data are available in grouped form, we can use OLS to estimate the parameters of the logit 

model, provided we take into account explicitly the heteroscedastic nature of the error term. If 

the data are available at the individual, or micro, level, nonlinear-in-the-parameter estimating 
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procedures are called for. If we choose the normal distribution as the appropriate probability 

distribution, then we can use the probit model. This model is mathematically a bit difficult as it 

involves integrals. But for all practical purposes, both logit and probit models give similar 

results. In practice, the choice therefore depends on the ease of computation, which is not a 

serious problem with sophisticated statistical packages that are now readily available. 

 

 LETS SUM IT UP: 

 

In last ,we conclude that LOGIT and PROBIT models are the alternative models to Linear 

Probabilty model(LPM). Although LPM, logit, and probit give qualitatively similar results, we 

will confine our attention to logit and probit models because of the problems with the LPM noted 

earlier. Between logit and probit, which model is preferable? In most applications the models are 

quite similar, the main difference being that the logistic distribution has slightly fatter tails. That 

is to say, the conditional probability Pi approaches zero or one at a slower rate in logit than in 

probit. Therefore, there is no compelling reason to choose one over the other. In practice many 

researchers choose the logit model because of its comparative mathematical simplicity. 

 

 EXCERCISES: 

 

 What are the various alternative models to Linear probability model( LPM) ? 

 
 Elaborate the LOGIT model? 

 
 Explain the PROBIT model? 

 
 Between logit and probit, which model is preferable ? 

 

 Distinguish between LOGIT and PROBIT models? 
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 INTRODUCTION: 
 

 

The TOBIT model is a censored regression model. Observations on the tanent variable y* are 

missing (or censored) if y* is below (or above) a threshold level. This model has been used in a 

large number of applications where the dependent variable is observed to be zero for some 

individuals in the sample(automobile expenditures, medical expectations, hours worked, wages, 

etc.). However, on careful scrutiny we find that the censored regression model( tobit model) is 

inappropriate for the analysis of these problems. The Tobit model is, strictly speaking, applicable 

in only those situations where the latent variable can,in principle, take negative values, but these 

negative values are not observed because of censoring. Where the zero observations are a 

consequence of individual decisions, these decisions should be modeled appropriately and the 

tobit model should not be used mechanically. 

 
 OBJECTIVES: 

1. To understand the TOBIT model. 

2. To understand the POISSON Regression Model. 

3. To understand the piecewise linear regression. 

4. To understand the various qualitative regression models (Ordinal Logit and Probit Models, 

Multinomial Logit and Probit Models, and Duration Models) 

 
 THE TOBIT MODEL: 

 

 

An extension of the probit model is the tobit model originally developed by James Tobin, the 

Nobel laureate economist. To explain this mode, we continue with our home ownership example. 

In the probit model our concern was with estimating the probabiolity of owning a house as a 

function of some socioeconomic variables. In the tobit model orur interest is in finding of some 

the amount of money a person or family spends on a house in relation to socioeconomic 

variables. Now we face a dilemma here: If a consumer does not purchase a house, obviously we 
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have no data on housing expenditure for such consumers; we have such data only on consumers 

who actually purchase a house. 

Thus consumers are divided into two groups, one consisting of, say n1 consumers about whom 

we have information on the regressors (say, income, mortgage interest rate, number of people in 

the family, etc) as well as the regressand (amount of expenditure on housing) and another 

consisting of n2 consumers about whom we have information only on regressors but not on the 

regressand. A sample in which information on the regressand is available only for some 

observations is known as a censored sample. Therefore, the tobit model is also known as 

censored regression model. 

Some authors call such models limited dependent variable regression models because of the 

restriction put on the values taken by the regressand. 

Statistically, we can express the tobit model as 

Yi = 1 + 2Xi + ui if RHS > 0 --------------------- 1 

= 0 otherwise 

Where RHS= right hand side. Note. Additional X variables can be easily added to the model. 
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Can we estimate regression (1) using only n1 observations and not worry about the remaining n2 

observations? The answer is no. for the OLS estimates of the parameters obtained from the 

subset of ni Observation will be biased as well as inconsistent, that is, they are biased even 

asymptotically. 

To see this, consider Figure As the figure shows, if Y is not observed (because of censoring), all 

such observations(=n2) denoted by crosses, will lie on the horizontal axis. If Y is observed, the 

observations(=n1) denoted by dots, will lie in the X-Y plane. It if intuitively clear that if we 

estimate a regression line based on the (n1+n2) observations only, the resulting intercept and 

slope coefficients are bound to be different than if all the … observations were into account. 

 
4.4 MODELING COUNT DATA: THE POISSON REGRESSION MODEL: 
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There are many phenomena where the regressand is of the count type, such as the number of 

vacations taken by the family per year, the number of patents received by a firm per year, the 

number of visits to a dentist of doctor per year, the number of visits to a grocery store per week, 

the number of parking or speeding tickets received per year, the number of days stayed in a 

hospital in a given period, the number of cars passing through a toll booth in a span of, say 5 

minutes, and so on. The underlying variable in each case is discrete, taking only a finite number 

of values. Sometimes count data can also refer to rare, or infrequent, occurrences such as getting 

hit by lightning in a span of a week, winning more than one lottery within 2 weeks, or having 

two or more heart attacks in a span of 4 weeks. How do we model such phenomena? 

Just as the Bernoulli distribution was chosen to model the yes/ no decision in the linear 

probability mode, the probability distribution that is specifically suited for count data is the 

Poisson probability distribution. The pdf of the Poisson distribution is given by. 

(𝑌 ) 
𝜇𝑌𝑒−𝜇 

𝑌 = 0, 1, 2 ------------------1 
 

𝑖 𝑌! 

 
 

Where f(Y) denotes the probability that the variable Y takes non-negative integer values, and 

where Y! (read Y factorial) stands for Y! = Y x (Y -1) x (Y-2) x 2 x 1. It can be proved that. 

E(Y) = 2 

var (Y) = 3 

Notice an interesting features of the Poisson distribution: Its variance is the same as its mean 

value. 

The Poisson regression model may be written as: 

Yi = E(Yi) + i = i + I ----------------- 4 

Where the Y’s are independently distributed as Poisson random variables with mean i For each 

individual expressed as. 

i = E(Yi) = 1 + 2X2i + 3X3i + ………………..kXki -------------- 5 

Where the X’s are some of the variables that might effect the mean value. For example, if our 

count variable is the number of visits to the Metropolitan Museum of Art in New York in a given 

year, this number will depend on variables such as income of the consumer, admission price, 

distance from the museum, and parking fees. 

For estimation purposes, we write the model as: 
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i 
Y = 

𝜇𝑌𝑒−𝜇 

+ 𝜇 
𝑌! 

-------------------6 

With 𝜇 replaced by (5) As you can readily see, the resulting regression model will be  nonlinear 

in the parameters. 

 FURTHER TOPICS IN QUALITATIVE RESPONSE :REGRESSION MODELS 

 

 

 

As noted at the outset, the topic of qualitative response regression models is vast. What we have 

presented in this lesson are some of the basic models in this area. For those who want to pursue 

this topic further, we discuss below very briefly some other models in this area. We will not 

pursue them here, for that would take us far away from the scope of this book. 

 

 Ordinal Logit and Probit Models: 
 

 

 

 

In the bivariate logit and probit models we were interested in modeling a yes or no response 

variable. But often the response variable, or regressand, can have more than two outcomes and 

very often these outcomes are ordinal in nature; that is, they cannot be expressed on an interval 

scale. Frequently, in survey-type research the responses are on a Likert-type scale, such as 

“strongly agree,” “somewhat agree,” or “strongly disagree.” Or the responses in an educational 

survey may be “less than high school,” “high school,” “college,” or “professional degrees.” Very 

often these responses are coded as 0 (less than high school), 1 (high school), 2 (college), 3 

(postgraduate). These are ordinal scales in that there is clear ranking among the categories but we 

cannot say that 2 (college education) is twice 1 (high school education) or 3 (postgraduate 

education) is three times 1 (high school education). 

 

To study phenomena such as the preceding, one can extend the bivariate logit and probit models 

to take into account multiple ranked categories. The arithmetic gets quite involved as we have to 
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use multistage normal and logistic probability distributions to allow for the various ranked 

categories. 

 

For the underlying mathematics and some of the applications, the reader may consult the Greene 

and Maddala texts. At a comparatively intuitive level, the reader may consult the Liao 

monograph. Software packages such as Limdep, Eviews, and Shazam have routines to estimate 

ordered logit and probit models. 

 

 

 

 

 

 Multinomial Logit and Probit Models 
 

 

 

 

In the ordered probit and logit models the response variable has more than two ordered, or 

ranked, categories. But there are situations where the regressand is unordered. Take, for example, 

the choice of transportation modeto work. The choices may be bicycle, motorbike, car, bus, or 

train. Although these are categorical responses, there is no ranking or order here; they are 

essentially nominal in character. For another example, consider occupational classifications, such 

as unskilled, semiskilled, and highly skilled. Again, there is no order here. Similarly, 

occupational choices such as self-employed, working for a private firm, working for a local 

government, and working for the federal government are essentially nominal in character. The 

techniques of multinomial logit or probit models can be employed to study such nominal 

categories. Again, the mathematics gets a little involved. The references cited previously will 

give the essentials of these techniques. And the statistical packages cited earlier can be used to 

implement such models, if their use is required in specific cases. 

 

 

 

 

 

 Duration Models 
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Consider questions such as these: (1) What determines the duration of unemployment spells? (2) 

What determines the life of a light bulb? (3) What factors determine the duration of a strike? (4) 

What determines the survival time of a HIV-positive patient? Subjects such as these are the topic 

of duration models, popularly known as survival analysis or time-to-event data analysis. In 

each of the examples cited above, the key variable is the length of time or spell length, which is 

modeled as a random variable. Again the mathematics involves the CDFs and PDFs of 

appropriate probability distributions. Although the technical details can be tedious, there are 

accessible books on this subject.44 Statistical packages such as Stata and Limdep can easily 

estimate such duration models. These packages have worked examples to aid the researcher in 

the use of such models. 
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 SUMMARY AND CONCLUSION: 

 

If we choose the normal distribution as the appropriate probability distribution, then we can use 

the probit model. This model is mathematically a bit difficult as it involves integrals. But for all 

practical purposes, both logit and probit models give similar results. In practice, the choice 

therefore depends on the ease of computation, which is not a serious problem with sophisticated 

statistical packages that are now readily available. If the response variable is of the count type, 

the model that is most frequently used in applied work is the Poisson regression model, which is 

based on the Poisson probability distribution. A model that is closely related to the probit model 

is the tobit model, also known as a censored regression model. In this model, the response 

variable is observed only if certain condition(s) are met. Thus, the question of how much one 

spends on a car is meaningful only if one decides to buy a car to begin with. However, Maddala 

notes that the tobit model is “applicable only in those cases where the latent variable [i.e., the 

basic variable underlying a phenomenon] can, in principle, take negative values and the observed 

zero values are a consequence of censoring and nonobservability.”There are various extensions 

of the binary response regression models. These include ordered probit and logit and nominal 

probit and logit models. The philosophy underlying these models is the same as the simpler logit 

and probit models, although the mathematics gets rather complicated. Finally, we considered 

briefly the so-called duration models in which the duration of a phenomenon, such as 

unemployment or sickness, depends on several factors. In such models, the length, or the spell of 

duration, becomes the variable of research interest. 

 
 LETS SUM IT UP: 

 

In the end we can say that tobit model is a censored regression model which has been used in a 

large number of applications where the dependent variable is observed to be zero for some 

individuals in the sample . Further if the response variable is of the count type, the model that is 

most frequently used in applied work is the Poisson regression model, which is based on the 

Poisson probability distribution . 
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 EXCERCISES: 

 

Q 1. How modeling of count data is done? 

Q 2. Describe piecewise linear regression. 

Q 3. Describe TOBIT model in short. 

Q 4. Elaborate the Ordinal Logit and Probit Models? 

 
Q 5. Describe the Multinomial Logit and Probit Models? 

Q 6. What do you mean by Duration Models? 
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