
DIGITAL COMPUTER FUNDAMENTALS AND MICROPROCESSOR 

 UNIT – I 

Introduction: Application of Computer - Different types of Computer systems - Basic 
components of Digital Computer System - Programming Languages; Number Systems. 

 
UNIT – II 

 
Boolean Algebra and Gate Networks: Fundamentals concepts of Boolean Algebra – Logical 
Multiplication AND Gates, OR Gates, and Inverters – Evaluation of logical Expressions – 
Basic Law of Boolean Algebra – Simplification of expressions – De Morgan’s theorems – Basic 
Duality of Boolean Algebra - Derivation of a Boolean Expression. 

 
UNIT - III 

Interconnecting Gates – Sum of products (SOP) and Products of sums (POS) – Derivation of 
products of sums expressions – Derivation of three Input variable expression – NAND gates and 
NOR gates - The Map method for simplifying expressions – Sub cube and covering – product of 
sums expressions – Don’t cares. 

 
UNIT – IV 

 
Microprocessors, Microcomputers and Assembly Language: Microprocessors - Microprocessor 
instruction set and Computer Languages-From large computers to single chip Microcontrollers; 
Microprocessor Architecture and Microcomputer systems: Microprocessor Architecture and its 
operations – Memory – I/O devices; 8085 Microprocessor Architecture and Interfacing: The 
8085 MPU – Examples of a 8085 based Microcomputer – Memory interfacing. 

 
UNIT –V 
Programming the 8085: Introduction to 8085 Instructions ; Code conversion: BCD to Binary 
conversion – Binary to BCD conversion – BCD to seven segment LED code conversion – 
Binary to ASCII and ASCII to binary code conversion – BCD addition – BCD subtraction. 
TEXT BOOKS 
1. Digital Computer Fundamentals‖.(6TH Edition) Thomas C.Bartee, 6th Edition T.M.H 
Publisher, New Delhi, 1991.(UNIT I, II & III) 
2. ―Microprocessor Architecture Programming and Application with the 8085‖. Ramesh 
Gaonkar, 5th Edition. (UNIT IV & V) 
 

      REFERENCE BOOKS: 
  1. Deborah Morley, Charles S. Parker, "Understanding Computers- 
 
  Today and Tomorrow", 1stEdition, Thomson Course Technology, 2007  

3. N.K. Srinath,"8085 Microprocessor Programming and Interfacing", PHI Publishing, 2005. 
 
 
 
 



. 

 

 
 
 
 
 
What is Computer: 
 
 
•Computer is an electronic device that is designed to work with Information. The 
 

Term computer is derived from the Latinterm‘computare’, this means to calculateor 
 

Programmable machine. 
 
•Computer cannot do any thing without a Program. It represents the decimal 
 

numbers through a string of binary digits. The Word 'Computer' usually refers to the 
 

Central Processing unit plus InternalMemory. 
 
•Charles Babbage is called the "Grand Father" of the computer. The First mechanical 
 

computer designed by Charles Babbage was called Analytical Engine.It uses read- 
 

only memory in the form of punch cards. 
 
•Computer is an advanced electronic device that takes raw data as input from the user 
 

and processes these data under the control of set of instructions (called program) and 
 

gives the result (output) and saves output for the future use. It can process both 
 
          numerical and non-numerical (arithmetic and logical) calculations 
 
Digital Computer 
 
 
•The basic components of a modern digital computer are:Input 
 
 

Device, Output Device, Central Processor Unit(CPU), mass storage 
 
 

device and memory. A Typical modern computer uses LSI Chips. 
 
 
 

UNIT -- I 

Introduction: Application of Computer - Different types of Computer systems - 
Basic components of Digital Computer System - Programming Languages; 
Number Systems. 

 

http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer


 
•Four Functions about computer are: 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Input(Data): 
 
 

• Input is the raw information entered into a computer from the input devices. It is the collection of 
letters, numbers, images etc. 

 
 
Process: 
 
 
 •Process is the operation of data as per given instruction. It is totally internal process of the 
computer system. 
 
Output: 
 
 
 •Output is the processed data given by computer after data processing. Output is also called as 
Result. We can save these results in the storage devices for the future use. 
 

http://ecomputernotes.com/fundamental/information-technology/what-do-you-mean-by-data-and-information
http://ecomputernotes.com/fundamental/input-output-and-memory/explain-secondary-storage-devices


Applications of Computer  
 
Business 
 
 
•A computer has high speed of calculation, diligence, accuracy, reliability, or versatility which 

made it an integrated part in all business organisations. 
•Computer is used in business organisations for: •Payroll 
calculations 
•Budgeting 
•Sales analysis 
•Financial forecasting 
•Managing employees database 
•Maintenance of stocks etc 
 
 
Banking 
 
 
•Today banking is almost totally dependent on computer. 
 
 
•Banks provide following facilities: 
 
 
•Banks provide online accounting facility, which includes current balances,deposits, overdrafts, interest 
charges, shares, and trustee records. 
 
 
•ATM machines are making it even easier for customers to deal with banks. 
 
Insurance 
 
•Insurance companies are keeping all records up-to-date with the help of  computers. The insurance 
companies, finance houses and stock broking firms are widely using computers for their concerns. 
  
•Insurance companies are maintaining a database of all clients with  information showing 
•procedure to continue with policies 
 
 
•starting date of the policies 
 
 
•next due installment of a policy 
 



•maturity date 
•interests due 
•survival benefits 
•bonus 
 
Education 
 
•The computer has provided a lot of facilities in the education system. 
 
•The computer provides a tool in the education system known as CBE 
 

(Computer Based Education). 
 
•CBE involves control, delivery, and evaluation of learning. 
 
•The computer education is rapidly increasing the graph of number of computer students. 
 
•There are number of methods in which educational institutions can use computer to educate the students. 
 
•It is used to prepare a database about performance of a student and analysis is carried out on this basis 
 
Marketing 
 
•In marketing, uses of computer are following: 
 
 
•Advertising-With computers, advertising professionals create art and graphics, write and revise copy, 
and print and disseminate ads with the goal of selling more products. 
  
•At Home Shopping-Home shopping has been made possible through use of computerized catalogues that 
provide access to product information and permit direct entry of orders to be filled by the customers 
 
HealthCare 
 
•Computers have become important part in hospitals, labs, and dispensaries. 
 

The computers are being used in hospitals to keep the record of patients 
 

and medicines. It is also used in scanning and diagnosing different diseases. 
 

ECG, EEG, Ultrasounds and CT Scans etc., are also done by computerized 
 

machines. 
 
•Some major fields of health care in which computers are used are: 
 
•Diagnostic System-Computers are used to collect data and identify cause of illness. 
•Lab-diagnostic System-All tests can be done and reports are prepared by computer. 



•Patient Monitoring System-These are used to check patient's signs for abnormality such as in 
Cardiac Arrest, ECG etc. 

•Pharma Information System-Computer checks Drug-Labels, Expiry dates, harmful drug’s side 
effects etc. 

•Surgery: Nowadays, computers are also used in performing 
surgery. 

 
Engineering Design 
 
 •Computers are widely used in Engineering purpose. 
 
 •One of major areas is CAD (Computer aided design). That provides creation and 

modification of images. Some fields are: 

 •Structural Engineering- Requires stress and strain analysis for design of Ships, Buildings, 
Budgets, Airplanes etc. 

 •Industrial Engineering-Computers deal with design, implementation and improvement of 
integrated systems of people, materials and equipments. 

 •Architectural Engineering-Computers help in planning towns, designing buildings, determining a 
range of buildings on a site using both 2D and 3D drawings. 

Government 
 
•Computers play an important role in government. Some major fields in this category are: 
 
•Budgets 
 
 
•Sales tax department 
 
 
•Income tax department 
 
 
•Male/Female ratio 
 
 
•Computerization of voters lists 
 
 
•Computerization of driving licensing system 
 
 
•Computerization of PAN card 
 
 
•Weather forecasting 
 



Different Types of computer System  

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Basic components of Digital Computer System 
 
 All types of computers follow the same basic logical structure and perform the following 
five basic operations for converting raw input data into information useful their users. 

 
S.No. 

 
Operation 

 
Description 

 
1 

 
Take  Input 

 
The process of entering data and instructions into the computer 
system. 

 
2 

 
Store Data 

 
Saving data and instructions so that they are available for 
processing as and when required. 

 
3 

 
Processing Data 

 
Performing arithmetic, and logical operations on data in 

order to convert  them into useful information. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Input Unit 
 This unit contains devices with the help of which we enter data into the computer. This unit 
creates a link between the user and the computer. The input devices translate the information into a form 
understandable by the computer. 

CPU (Central Processing Unit) 

 CPU is considered as the brain of the computer. CPU performs all types of data processing 
operations. It stores data, intermediate results, and instructions (program). It controls the operation of all 
parts of the computer. 

 
4 

 
Output 

Informatio

n 

 
The process of producing useful information or results for the 

user,such as a printed report or visual display. 

 
5 

 
Control the 

 
Directs  the manner and sequence in which all of the above 
operations are performed. 



CPU itself has the following three components − 

• ALU (Arithmetic Logic Unit) 
• Memory Unit 
• Control Unit 

 

Output Unit 
 The output unit consists of devices with the help of which we get the information from the 
computer. This unit is a link between the computer and the users. Output devices translate the computer's 
output into a form understandable by the users. 

Central Processing Unit (CPU) consists of the following features − 

• CPU is considered as the brain of the computer. 
• CPU performs all types of data processing operations. 
• It stores data, intermediate results, and instructions (program). 
• It controls the operation of all parts of the computer. 

 

    
Memory or Storage Unit 
 This unit can store instructions, data, and intermediate results. This unit supplies information to 
other units of the computer when needed. It is also known as internal storage unit or the main memory or 
the primary storage or Random Access Memory (RAM). 

Its size affects speed, power, and capability. Primary memory and secondary memory are two types of 
memories in the computer. Functions of the memory unit are − 

• It stores all the data and the instructions required for processing. 

• It stores intermediate results of processing. 

• It stores the final results of processing before these results are released to an output device. 

• All inputs and outputs are transmitted through the main memory. 

Control Unit 



 This unit controls the operations of all parts of the computer but does not carry out any actual data 
processing operations. 

Functions of this unit are − 

• It is responsible for controlling the transfer of data and instructions among other units of a 
computer. 

• It manages and coordinates all the units of the computer. 

• It obtains the instructions from the memory, interprets them, and directs the operation of the 
computer. 

• It communicates with Input/Output devices for transfer of data or results from storage. 

• It does not process or store data. 

ALU (Arithmetic Logic Unit) 

 This unit consists of two subsections namely, 

• Arithmetic Section 
• Logic Section 

Arithmetic Section 
 Function of arithmetic section is to perform arithmetic operations like addition, subtraction, 
multiplication, and division. All complex operations are done by making repetitive use of the above 
operations. 

Logic Section 

 Function of logic section is to perform logic operations such as comparing, selecting, matching, 
and merging of data. 

 
Types of Programming Languages 
 
 

There are two types of programming languages, which can be categorized into the following way 
 
1. Low level language 
 

Machine language (1GL) 
 

Assembly language (2GL) 
 
2. High level language 
 

Procedural-Oriented language (3GL) 
 

Problem-Oriented language (4GL) 
 

Natural language (5GL) 



 
1. Low level language 
 
 
This language is the most understandable language used by computer to perform its operations. It can 
be further categorized into: 
 
 

MachineLanguage(1GL) 
Machine language consists of strings of binary numbers (i.e. 0s and 1s) and it is the only one language, the 
processor directly understands. Machine language has an Merits of very fast execution speed and efficient 
use of primary memory. 
Merits: 
¨ It is directly understood by the processor so has faster execution time since the programs written 
in this language need not to be translated. 
¨ It doesn’t need larger memory.  
Demerits: 
¨ It is very difficult to program using 1GL since all the instructions are to be represented by 0s    
and 1s. 
¨ Use of this language makes programming time consuming. It is difficult to 

find error and to debug. 
¨ It can be used by experts only. 

 
Assembly Language 
 
 

Assembly language is also known as low-level language because to design 
 
a program programmer requires detailed knowledge of hardware specification. This 
 
language uses mnemonics code (symbolic operation code like ‘ADD’ for addition) in 
 
place of 0s and 1s. The program is converted into machine code by assembler. The 
 
resulting program is referred to as an object code. 
 
Merits: 
 
¨ It is makes programming easier than 1GL since it uses mnemonics code for 
 
programming. Eg: ADD for addition, SUB for subtraction, DIV for division, etc. 
 
¨ It makes programming process faster. 
 
¨ Error can be identified much easily compared to 1GL. 
 
¨ It is easier to debug than machine language. 
 



 
Demerits: 
 
 

Programs written in this language is not directly understandable by computer so translators should be 
used. 

 
 
¨ It is hardware dependent language so programmers are forced to think in 
terms of computer’s architecture rather than to the problem being solved. 
 
 
¨ Being machine dependent language, programs written in this language are 
very less or not protable. 
 
 
¨ Programmers must know its mnemonics codes to perform any task. 
 

 
2. High level language 
 
 
Instructions of this language closely resembles to human language or English like words. It uses 
mathematical notations to perform the task. The high level language is easier to learn. It requires less time 
to write and is easier to maintain the errors. The high level language is converted into machine language 
by one of the two different languages translator programs;inter preteror compiler. 
 
 
 Procedural-Oriented language(3GL) 

 
Procedural Programming is a methodology for modeling the problem being solved, by determining the 
steps and the order of those steps that must be followed in order to reach a desired outcome or specific 
program state. These languages are designed to express the logic and the procedure of a problem to be 
solved. It includes languages such as Pascal, COBOL, C, FORTAN, etc. 
 
Merits: 
 
¨ Because of their flexibility, procedural languages are able to solve a variety of problems. 

 
¨ Programmer does not need to think in term of computer architecture which makes them focused on 
the problem. 
 
¨ Programs written in this language are portable. 
 
Demerits: 
 
¨ It is easier but needs higher processor and larger memory. 

 
¨ It needs to be translated therefore its execution time is more. 

 



 
Problem-Oriented language(4GL) 

 
 

It allows the users to specify what the output should be, without describing all the details 
of how the data should be manipulated to produce the result. This is one step ahead from 3GL. These are 
result oriented and include database query language. 
Eg: Visual Basic, C#, PHP, etc. 
The objectives of 4GL are to: 

• Increase the speed of developing programs. 
• Minimize user’s effort to botain information from computer.  
• Reduce errors while writing programs. 

 
 
Merits: 
¨ Programmer need not to think about the procedure of the program. So, programming is much 
easier. 
 
 
Demerits: 
¨ It is easier but needs higher processor and larger memory. 
¨ It needs to be translated therefore its execution time is more. 
 
Natural language(5GL) 

 
Natural language are stil in developing stage where we could write statrments that 

would look like normal sentences. 
 
 
Merits: 
¨ Easy to program. 
¨ Since, the program uses normal sentences, they are easy to understand.¨ The programs 
designed using 5GL will have artificial intelligence (AI). ¨ The programs would be much more 
interactive and interesting. 
 
 
Demerits: 
¨ It is slower than previous generation language as it should be completely translated into 
binary code which is a tedious task. 
¨ Highly advanced and expensive electronic devices are required to run programs 
developed in 5GL. Therefore, it is an expensive approach. 
These are the different types of programming languages with their merits and demerits. 
 
 
 
 
 



 
Memory 
 

 
 
 
Number systems 
 
 A Number system defines a set of values used to represent the quantity. It has different types 

of number systems 
 

• Convert decimal numbers to binary. 
 

• Convert binary numbers to decimal. 
 

• Convert decimal numbers to Octal. 
 

• Convert Octal number to decimal numbers. 
 

• Convert decimal numbers to hexadecimal. 
 

• Convert hexadecimal numbers. 
 

• Convert binary numbers to Octal. 
 

• Convert binary numbers to hexadecimal. 
 

• Convert Octal number to binary. 
 

• Convert hexadecimal Numbers to binary. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Bits and Bytes 
 
•A binary digitis a single numeral in a binary number. 
 
•Each 1 and 0 in the number below is a binary digit: – 1 0 0 1 0 1 0 1 
 
•The term “binary digit” is commonly called a “bit.” 
 
•The total number of digits used in a number system is called its base or radix. its grouped together is 
called a “byte.” 



 
 
 
DecimalNumberSystem 
 
 
•The prefix “deci-” stands for 10 
 
•The decimal number system is a Base 10 number system: 
 

1. There are 10 symbols that represent quantities: 
 

2.0, 1, 2, 3, 4, 5, 6, 7, 8, 9 
 

4. Each place value in a decimal number is a power of 10. 
 
Background Information 
 
 
•Any number to the 0 (zero) power is 1.  

 4
0
= 1            16

0
= 1 1,482

0
= 1. 

•Any number to the 1st power is the number itself. 
 

 10
1
= 10 49

1
= 49 827

1
= 827 

 
 
Binary Numbers 
  
•The prefix “bi-” stands for 2 
•The binary number system is a Base 2 number system: 
 

*There are 2 symbols that represent quantities:0, 1 
 

*Each place value in a binary number is a power of 2. 
 

1)Binary Number System 
 
 

A Binary number system has only two digits, which are 0 and 1. Every number (value) is represented 
with 0 and 1 in this number system. The base of binary number system is 2, because it has only two 
digits. Though DECIMAL (No 3) is more frequently used in Number representation, 
BINARY is the number system form which the system/machine accepts. 

 
 
2)Octal number system 
 
 

Octal number system has only eight (8) digits from 0 to 7. Every number (value) is represented with 
0,1,2,3,4,5,6 and 7 in this number system. The base of octal number system is 8, because it has only 
8 digits. 



 
 
 
 
3) Decimal number system 
 
 
 Decimal number system has only ten (10) digits from 0 to 9. Every number(value) is represented 
with 0,1,2,3,4,5,6, 7,8 and 9 in this number system. The base of decimal number system is 10, because it 
has only 10 digits. 
 
 
4)Hexadecimal number system 

 
 
A Hexadecimal number system has sixteen (16) alphanumeric values from 0 to 9 and A to F. Every 
number (value) represents with 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F in this number system. The 
base of hexadecimal number system is 16, because it has 16 alphanumeric values. Here, we have 0 to 9, 
representing 0 – 9 but from 10, we have A is 10, B is 11, C is 12, D is 13, E is 
 
NUMBER SYSTEM BASE USED DIGIT EXAMPLE 
BINARY 2 0,1 (111011)2 
OCTAL 8 0,1,2,3,4,5,6,7 (360)8 
DECIMAL 10 0,1,2,3,4,5,6,7,8,9, (240)10 
HEXA DECIMAL 16 0,1,2,3,4,5,6,7,8,9, A, B, 

C, D, E, F. 
(F0)16 

 
 

Convert decimal numbers to binary 
 
•16 
 
  2    16 
  2     8     -  0            MSB 
  2     4     -  0 
  2     2     -  0 
         1     -  0            LSB 
 
ANS:   (16)10   =  (1000)2 

 
Convert binary numbers to decimal 
 
•A binary number can be converted into a decimal number by adding the products of each bit 

and its weight. 
  
 
 
 
 



2 

3 

METHOD: 1 
 
•(101) 

101
2 

= 1 x 2
2
+ 0 x 2

1
+ 1 x 2

0
= 4 + 0+1 

        = 5 
ANS:  (101)2 = (5)10 

 
 
Binary Fractions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  
 
METHOD:2 
 
 
(1101.0111 ) 
 
101.0111 =      (1     ×  2    )   + (1×22) + (0×21) + (1×20) + (0×2-1) + (1×2-2) + (1×2-3) + (1×2-4) 
 



 

 
 

        = 8 + 4 + 0+ 1 + 0 + 1/4 + 1/8+ 1/16 
 
 
 

       = 8 + 4 + 0+ 1 + 0 + 0.25 + 0.125+ 0.0625 
Ans: 

 
 (1101.0111 )2 = 13.437510 

 
 
 
 
 
 
 
 
 
 
 
 
Octal Number System 
 
•The prefix “Oct -” stands for 8 
 
•The Octal number system is a Base 8 number system: 
 

1. There are 8 symbols that represent quantities: 
2.  0, 1, 2, 3, 4, 5, 6, 7 
3. Each place value in a decimal number is a power of 8. 
 

Convert decimal numbers to Octal 
 
 •To convert a decimal number to octal, we have to divide the decimal number by 8 repeatedly and 
collect the remainders from top to bottom 
 
    

 
 
 



 
 
 
 
Convert  Octal numbers to decimal number 
 

   
 
 
 



 
 
 
Hexadecimal Number System 
 
•The prefix “Hexa -” stands for 16 

• •The Hexa number system is a Base 16 number system: 
 

• There are 16 symbols that represent quantities: 
• 2.0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F  
• Each place value in a decimal number is a power of 16. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Convert decimal numbers to hexadecimal 
 
•To convert a decimal number to octal, we have to divide the decimal number by 8 repeatedly and collect 

the remainders from top to bottom. 
 
 

 
 
 
 
 
Convert hexadecimal numbers to decimal 
 

    

 



 

Convert binary numbers to Octal 
 

   
 
 
 

1) 10111.12 
010111 . 1002 

   (2   7   .  4 )8 
 

 
 
 
 
 
Convert binary numbers to hexadecimal 
 

   
 
 

1) (110.101)2 

(0110.1010)2 
     (6 . A)16 

 
 
 
 
 
 
 
 
 
 
 
 
 



Convert Octal number to binary 
                                                                   

 
 
 
 
Convert hexadecimal Numbers to binary 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
  
 
 
 
 
 
 
 
BOOLEAN ALGEBRA AND GATE NETWORKS 

Modern Computers are designed and maintained, and their operation is analyzed, by using 
techniques and symbology from a field of mathematics called modern algebra. Algebraists have 
studied for over a hundred years mathematical systems called Boolean algebra. 

 The name Boolean algebra honors a fascinating English mathematician, George Boole. 
 He published a classic book on 1854, an investigation of the laws of thought, on which are founded 

the mathematical theories of logic and probabilities. 
 Calculus of propositions and the algebra of sets, were based principally on Boole’s work. 

 
FUNDAMENTAL CONCEPTS OF BOOLEAN ALGEBRA. 

The fundamental concepts may include the following that 
 The variable used in Boolean equation has a unique characteristic. 
 The two values assumed by a variable may be represented by the symbols 0 

and 1. 
 The original symbol proposed by Boole was ‘+’. 
 For a given value of the variable, the function can be either 0 or 1. 
 The rules for this operation can be given as 

follows: 0+0 = 0 
0+1 = 1 
1+0 = 1 
1+1 = 1 

This is logical addition table and represents a standard binary addition table except for the last 
entry. 
Both x and y represent 1s, the value of x+y is 1. 
 

LOGICAL MULTIPLICATION AND GATES 
In Boolean Algebra ‘.’ Symbol is used to represent Logical multiplication and AND 

operation. 
The rules for this operation are as follows: 0.0=0 

0.1=0 
1.0=0 
1.1=1 

Both (+) and (.) obey a mathematical rule called the associative law. For instance 
(X+Y)+Z = X+(Y+Z) 
(X.Y). Z = X. (Y.Z) 

We can simply write as X + Y + Z and X. Y. Z. For no matter in what order the operation 
is performed, the result is same. 

UNIT -- II 
Boolean Algebra and Gate Networks: Fundamentals concepts of Boolean Algebra – Logical 
Multiplication AND Gates, OR Gates, and Inverters – Evaluation of logical Expressions – 
Basic Law of Boolean Algebra – Simplification of expressions – De Morgan’s theorems – 
Basic Duality of Boolean Algebra - Derivation of a Boolean Expression. 
 



The + and . operations are physically realized by two types of electronic circuits called OR 
gates and AND gates. 

GATE 
A gate is simply an electronic circuit, which operates on one or more input signals to produce an 
output signal. 

 
AND GATE 

 The AND gate is the logical circuit with the operation similar to logical multiplication. 
They produce the high output if all the inputs are in high state, this gate produce low output, when any one of 
the inputs is low 

   
OR GATE 

 The OR gate is similar to the operation of arithmetic addition. The OR gate 
produce the high output when any one of the input is in high state. We get low output if either of the input 
is low. 
 

 
 
 
 
 
 
 
 



 
Complementation and inverters or NOT gate 

 In Boolean algebra, we have an operation called complementation and the symbol is 
“ –”. 

 The complement is physically realized by a gate called inverter or NOT gate. 
 The NOT gate produce high output, when the input is low and low output when the input is high. 

 

 
 
EVALUATION OF LOGICAL EXPRESSION 

• The table of values for the three operations is called tables of combinations. 
• To study a logical expression, it is very useful to construct a table of values for the variables. 
• Consider the expression X+ YZ. There are three variables in this expression X, Y, Z, each of which can 

assume the value 0 or 1. 
 
 
 

X Y Z Z’ YZ’ X + YZ’ 
0 0 0 1 0 0 
0 0 1 0 0 0 
0 1 0 1 1 1 
0 1 1 0 0 0 
1 0 0 1 0 1 
1 0 1 0 0 1 
1 1 0 1 1 1 
1 1 1 0 0 1 

 
 The above is the truth table for the expression X + YZ’. The value Z is complemented 

and the complemented value is multiplied with Y to get YZ’. 
 This column will have the value 1 only when both Y is a 1 and Z’ is a 1. 
 Now the value of YZ’ is performed logical addition with the value of X and the final 

value is evaluated. 
 
 
 



BASIC LAWS OF BOOLEAN ALGEBRA 
 A list of basic rules by which Boolean algebra expressions may be manipulated are 

contained in this table. 
 Each rule may be proved by using the proof by perfect induction. 

 
BOOLEAN ALGEBRA RULES 

   
 
 
 
 
 

 
 



SIMPLIFICATION OF EXPRESSIONS 
 
The rules may be used to simplify Boolean expression. 
 

Consider the expression (X + Y)(X+Y’)(X’+Z). 
This can be simplified by 

(X + Y) (X + Y) (X + Z) 
Consider the two terms, 

(X+Y) (X+Y’) 

XX + XY’ + XY + YY’ 
X + XY’ + XY + 0 (YY = 0, XX = X) 
X + X(Y’ +Y) ( Y’ + Y = 1) 
X + X(1) 
X + X (X+X=1) 

X 
Now multiply the term (X + Z) 

   X(X’+Z) X’ + XZ. 
 
 

XZ. XX’ =0 
 

So the expression (X + Y) (X+Y’) (X’+Z) is reduced to XZ. 
 
 

 
 
 

 

 
 
 
 



 
 

 

 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 



DEMORGAN’S THEOREM 
Demorgan’s theorem is very useful to design circuits in Boolean algebra. 

The following two rules are the Demorgan’s theorem. 

1. X’ + Y’ = X’ . Y’ 

2. (X . Y)’ = X’ + Y’ 
 The complement of any Boolean expression or a part of any expression may be found by 

means of these theorems. 
 Two steps are used to form a complement. 

1. The (+) symbols are replaced with (.) and (.) symbol are replaced 
with (+) symbol. 

2. Each of the terms in the expression is complemented. 
The complement of W’X+YZ’ is done by two steps: 

 The addition symbol is changed 
 The complement of each term is 

formed. Ex: 
(W’.X)’(Y.Z’)’ 
can be written as 
(W+X’)(Y’+Z) 

Since W and Z were already complemented, they become un complemented by the 
theorem 

X’ = X. 
It is sometimes necessary to complement both sides of an equation. This may be done in 
the same way as before: 

WX+YZ =0 
Complementing both sides gives 

(WX+YZ)’ = 0’ 
(W’+X’)(Y’+Z’) =1 
 

TRUTH TABLE FOR DEMORGAN’S THEOREM 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

INPUTS OUTPUT 
X Y Z 
0 0 1 
0 1 0 
1 0 1 
1 1 1 

 



BASIC DUALITY OF BOOLEAN ALGEBRA 
 The postulates and theorems which have been presented can all be divided into pairs. 
 Boolean algebra is defined as (0,1) and by the two binary operator (+, .) 

Example: 
i. (X+Y)+Z = X+(Y+Z) is the dual of (XY)Z = X(YZ) 

ii. X + 0 =X is the dual of X. 1 = X. 
iii. X + X = X is the dual X.X =X 
iv. X +Y = Y + X is the dual X .Y = Y. X 

DERIVATION OF A BOOLEAN EXPRESSION 
When designing a logical circuit, the logical designer works from two sets of known values. 

1. The various states which the inputs to the logical network can take , and 
2. The desired outputs for each input condition. 

The logical expression is derived from these sets of values. 
The truth table for two inputs X and Y in a logical network to give an output Z is as 

follows: 
X Y Z 
0 0 1 
0 1 0 
1 0 1 
1 1 1 

 
 It is necessary to add another column to the table. 
 This consists of list of product terms obtained from input variables. 
 The input is complemented when the input value is 0 and not complemented when the 

value is 1. 
X Y Z Product of terms 
0 0 1 (XY)’ 
0 1 0 (XY)’ 
1 0 1 (XY)’ 
1 1 1 (XY)’ 

 Whenever Z is equal to 1, the X and Y product term from the same row is removed and formed into 
sum of products.  
 

 The table for the expression X + Y is evaluated. 
X Y Y’ X + Y’ 
0 0 1 1 
0 1 0 0 
1 0 1 1 
1 1 0 1 

 The last column of this table agrees with the last column of the desired function (the value of Z) and 
they are equivalent. 
 There are now three terms, each product of two variables. The logical sum of these is 
equal to the expression desired. This type of expression is often referred to as canonical 
expansion for the function. 
 

 The complete expression in normal form is 



(XY)’ + XY’ + XY = Z 
The left-hand side of the expression may be simplified as follows: 

(XY)’ + X (Y’ + Y) = Z 

(XY)’ + X (1) = Z (XY)’ + X = Z 
X + Y ‘= Z 

Truth table for three input values X,Y and Z 
X Y Z Output 

A 
0 0 0 1 
0 0 1 0 
0 1 0 1 
0 1 1 0 
1 0 0 1 
1 0 1 0 
1 1 0 1 
1 1 1 0 

 
A column is added to listing the inputs, A, Y,and Z according to their values in the input 
columns. 
The product terms from each row in which the output is a 1 are collected ((XYZ)’, X’YZ’, 
XY’Z’, and XYZ’) and the desired expression is the sum of these products (X’Y’Z’+ 
X’YZ’+XY’Z’+XYZ’). 

Therefore, the complete expression in standard form for the desired network is 

 

X’Y’Z’ + X’YZ ‘+ XY’Z’ + XYZ’ =A 

X’(Y’Z’+YZ’)+X(Y’Z’+YZ’) =A 
X’(Z’(Y’+Y))+X(Z’((Y’+Y)) =A 
X’Z’+XZ’ =A 
Z’ =A 
 
 
 
 

 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

 
Interconnecting Gates  
   
 
 

 
 
 

 
 
 
 
 
 
 

UNIT -- III 
Interconnecting Gates – Sum of products (SOP) and Products of sums (POS) – 
Derivation of products of sums expressions – Derivation of three Input variable 
expression – NAND gates and NOR gates - The Map method for simplifying expressions 
– Sub cube and covering – product of sums expressions – Don’t cares. 
 



 
what is the logic expression following logic circuit 
 
 
 

 
 
 

Sum of products (SOP) 
 

• An SOP expression when two or more product terms are summed by Boolean addition.  
 
Examples: 
  

 
 

 
Also: 
  
 

• In an SOP form, a single over bar cannot extend over more than one variable; however, more than 
one variable in a term can have an over bar: 
 
Examples: 
                     
                          is ok 
But not: 
  

 
 
 
 
 
 
 
 
 

ACCBABA
DCBCDEABC

ABCAB

++

++

+

DBCCBAA ++

CBA

ABC



Implementation of an SOP 
• X=AB+BCD+AC 
• AND/OR implementation  

 
• NAND/NAND implementation  

 
General Expression  SOP 

• Any logic expression can be changed into SOP form by applying Boolean algebra techniques. 
 ex: 
 A(B + CD)  = AB + ACD 
 AB + B(CD + EF) = AB + BCD + BEF 
 (A + B)(B + C + D) = AB + AC + AD + BB + BC + BD 
 (A + B) + C          = (A + B)C  = (A + B)C = AC + BC  
 
 
The Product-of-Sums (POS) 
 When two or more sum terms are multiplied, the result expression is a product-of-sums (POS): 

 Examples: 
 
 
 
 
 Also: 

 

))()((
))()((

))((

CACBABA
DCBEDCCBA

CBABA

++++

++++++

+++

))(( DCBCBAA ++++



 
 In a POS form, a single over bar cannot extend over more than one variable; however, more than 

one variable in a term can have an over bar: 
 
 Examples: 

                                                   is ok 
 

 Also: 
 
 
 

Implementation of a POS 
 

• X=(A+B)(B+C+D)(A+C) 
• OR/AND implementation  

 
 
 
 NAND Gate 

 Complemented AND gate 

 Generates an output signal of: 
 
 

 1 if any one of the inputs is a 0 

 0 when all the inputs are 1 

CBA ++

CBA ++



 
 
 
 
 
NOR Gate 

 Complemented OR gate 

 Generates an output signal of: 
 
 

 1 only when all inputs are 0 

 0 if any one of inputs is a 1 

 

 

 
 
 
 
 
 
 
 



The Karnaugh Map 
• Feel a little difficult using Boolean algebra laws, rules, and theorems to simplify logic? 
• A K-map provides a systematic method for simplifying Boolean expressions and, if properly 

used, will produce the simplest SOP or POS expression possible, known as the minimum 
expression. 

 
What is K-Map 

• It’s similar to truth table; instead of being organized (i/p and o/p) into columns and rows, the 
K-map is an array of cells in which each cell represents a binary value of the input variables. 

• The cells are arranged in a way so that simplification of a given expression is simply a matter 
of properly grouping the cells. 

• K-maps can be used for expressions with 2, 3, 4, and 5 variables. 
 3 and 4 variables will be discussed to illustrate the principles. 

 



 
 

 

 



 
The 2 Variable K-Map 

• F(A,B) = AB + AB  

 
 
 F(A,B) = AB + AB + AB  

 
 
 
 
 
 
 
 

 



The 3 Variable K-Map 
 

• F(A,B,C) = ∑ (0,1,6,7) 

 
 
 F(A,B,C) = ∑ (0,2,5,7) 

 

 
 

 
 



 
 

The 3 Variable K-Map 
 

• There are 8 cells as shown: 

 
The 4-Variable K-Map 
 

• F(A,B,C,D)  =   ∑ (0,1,2,3,4,5,6,7) 

 
 
 
 
 
 
 
 
 
 
 
 



• F(A,B,C,D)  =   ∑ (0,1,2,4,5,10,11,14,15) 
 

 
 
The 4-Variable K-Map 
 

 
 
 
 
 



 

 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 



 
 
 
 
 

 
 
MICROPROCESSORS 

 
 

 The word comes from the combination micro and processor. 
 In this context processor means a device that processes numbers, specifically 

binary numbers, 0’s and 1’s. 
 Micro is a new addition. 
 In the late 1960’s, processors were built using discrete elements. 
 In the early 1970’s the microchip was invented. 
 All of the components that made up the processor a single piece of silicon. 
 The size became several thousand times smaller and the speed became several 

hundred times faster. The “Micro” Processor was born. 
 

The microprocessor is a programmable device that takes in numbers, performs on 
them arithmetic or logical operations according to the program stored in memory and then 
produces other numbers as a result. 

 

PROGRAMMABLE DEVICE: 
 The microprocessor can perform different sets of operations on the data it receives 

depending on the sequence of instructions supplied in the given program. 
 By changing the program, the microprocessor manipulates the data in different ways. 

Instructions: 
 Each microprocessor is designed to execute a specific group of operations. 
 This group of operations is called an instruction set. 

Takes in: 
 The data that the microprocessor manipulates must come from somewhere. 
 It comes from what is called “input devices”. 
 These are devices that bring data into the system from the outside world. 
 These represent devices such as a keyboard, a mouse, switches, and the like. 

 
 

NUMBERS: 
 It only understands binary numbers. 
 A binary digit is called a bit (which comes from binary digit). 
 The microprocessor recognizes and processes a group of bits together. This group of 

bits is called a “word”. 

UNIT -- IV 
Microprocessors, Microcomputers and Assembly Language: Microprocessors - Microprocessor 
instruction set and Computer Languages-From large computers to single chip 
Microcontrollers; Microprocessor Architecture and Microcomputer systems: Microprocessor 
Architecture and its operations – Memory – I/O devices; 8085 Microprocessor Architecture 
and Interfacing: The 8085 MPU – Examples of a 8085 based Microcomputer – Memory 
interfacing 



                            They processed information 8-bits at a time. 
         Later microprocessors (8086 and 68000) were designed with 16-bit words.  
A group of 8- bits were referred to as a “half-word” or “byte”. 
A group of 4 bits is called a “nibble”. 
Also, 32 bit groups were given the name “long word”. 
 Today, all processors manipulate at least 32 bits at a time and there exists microprocessors 
that can process 64, 80, 128 bits Words, Bytes, etc.The earliest microprocessor (the Intel 8088 
and Motorola’s 6800) recognized 8-bit words. 

Memory is usually measured by the number of bytes it can hold. It is measured in 
Kilos, Megas and lately Gigas. A Kilo in computer language is 210 =1024. So, a KB (KiloByte) is 
1024 bytes. Mega is 1024 Kilos and Giga is 1024 Mega. 

 
 Computer-a programmable machine that processes binary data. 
 It includes four components: 
 CPU (ALU plus control unit), memory, input, and output. 

 
Microprocessor Digital 
 

· CPU-the Central Processing Unit. The group of circuits that processes data and provides 
control signals and timing. It includes the arithmetic/logic unit, registers, instruction 
decoder, and the control unit. 

 
 
 
                        Block diagram of a computer 
 

 
 

 
 
 
 
 

· ALU-the group of circuits that performs arithmetic and logic operations. The ALU is a part of 
the CPU. 

 
· Control Unit-The group of circuits that provides timing and signals to all operations in the 
computer and controls data flow. 

ALU 

Control unit 

Memory 

Input Output 



 
· Memory-a medium that stores binary information (instructions and data). 

 
· Input -a device that transfers information from the outside world to the computer 

 

MICROPROCESSOR INSTRUCTION SET AND COMPUTER LANGUAGES 
 

 Microprocessors recognize and operate in binary numbers. 
 However, each microprocessor has its own binary words, instructions, meanings, and 

language. 
 The words are formed by combining a number of bits for a given machine. 

MACHINE LANGUAGE 
 

The number of bits in a word for a given machine is fixed, and words are formed through 
various 'combinations of these bits. For example; a machine with a word length of eight bit scan 
have 756 (28) combinations of eight bits-thus a language of 256 words. 

8085 MACHINE LANGUAGE 
 

The Z80 is a microprocessor with 8-bit word length .Its instruction set (or language) is 
upward compatible with that of the 8080; the Z80 has 158 instruction types that include the entire 
8080 set of 72 instruction types. 

8085 ASSEMBLY LANGUAGE 
 

Even though the instructions can be written in hexadecimal code, it is still not easy to 
understand such a program. Therefore, each manufacturer of microprocessors has devised a 
symbolic code for each instruction, called a mnemonic. 

 ASCII Codes 
 

A computer is a binary machine; in order to communicate with the computer in alphabetic letters 
and decimal numbers. translation codes are necessary. The commonly used code is known as 
ASCII-American Standard Code for Information Interchange.. 

 
Another code, called EBCDIC (Extended Binary Coded Decimal Interchange Code) is widely 
used in IBM computers 

 

 HIGH-LEVEL LANGUAGES 
 

Programming languages that are intended to be machine-independent are called high-level 
languages. The list includes such languages as C, FORTRAN, BASIC, PASCAL, and COBOL. 



 
Each microprocessor needs its own compiler or interpreter for each high-level language. 

 

 OPERATING SYSTEMS: 
 

The interaction between the hardware and the software is managed by a set of programs called 
an operating system of a computer. 

 
 
 
 
 
 

 
FROM LARGE COMPUTERS TO SINGLE-CHIP MICROCONTROLLERS 

Different types of computers are designed to serve different purposes. some are 
suitable for scientific calculations, while others are used simply for turning appliances on and 
off. 

In 1970s, computers were broadly classified in three categories as Mainframe, Mini 
and Microcomputers.. 

 LARGE COMPUTERS: 
These are large, general-purpose, multi-user, multitasking computers designed to 

perform such data processing tasks as complex scientific and engineering calculations and 
handling of records for large corporations or government agencies. 

  MEDIUM-SIZE COMPUTERS: 

In the 1960s, these computers were designed to meet the instructional needs of small 



colleges, the manufacturing problems of small factories, and the data processing tasks of 
medium-size businesses, such as payroll and accounting. These were called mini-computers. 
These machines were slower and smaller in memory capacity than mainframes. 

                 

   MICRO COMPUTERS: 

The 4-bit and 8-bit microprocessors became available in the nid-1970s, and initial 
applications were primarily in the areas of machines control and instrumentation. Present- day 
microcomputers can be classified in four groups: personal (or business) computers (PC), work 
stations, single-board, and single-chip microcomputers (microcontrollers). 

 
    PERSONAL COMPUTERS (PC): 

These microcomputers are single-user system and are for a variety of purposes such as 
payroll, business accounts, word processing, legal and medical record keeping, personal finance, 
accessing internet resources (e-mail, web search, newsgroup), and instruction. They are also 
known as personal computers (PC) or desktop computers. 

    WORKSTATIONS: 
These are high-performance cousins of the personal computers. They are used in 

engineering and scientific applications such as computer-aided design (CAD), computer- aided 
engineering (CAE), and computer-aided manufacturing (CAM).They generally include system 
memory and storage (hard disk) memory in gigabytes, and a high-resolution screen. The RISC 
processors tend to be faster and more efficient than the processor used in personal computers. 

 
SINGLE-BOARD MICROCOMPUTERS: 

 
These microcomputers are primarily used in college laboratories and industries for 

instructional purpose or to evaluate the performance of a given microprocessor. They can also 
be part of some larger system. 

SINGLE CHIP MICROCOMPUTERS:- 
 

These microcomputers are designed on a single chip, which typically includes a micro 
processor, 256 bytes of R/W memory, from 1K to 8K bytes of ROM, and several signal lines to 
connect I/Os. 

 
Microprocessor architecture and microcomputer systems 

 The Microprocessor is a programmable digital device, designed with registers, flip-flops 
and timing elements. 

 It has a set of instructions, designed internally to manipulate data and communicate 
with peripherals. 

 The process of data manipulation and communication is determined by the logic 
design of the microprocessor, called the architecture. 

 All the various functions performed by the microprocessor can be classified in three 
general categories. 



 Microprocessor-initiated operations 
 Internal operations 
 Peripheral operations 

 The term micro processing unit (MPU) is defined as a group of devices that can perform 
these functions with the necessary set of control signals. 

 This is similar to the term central processing unit (CPU). 
Microprocessor initiated operations and 8085 bus organization 
 The MPU performs primarily four operations. 

1. Memory Read: Reads data from memory. 
2. Memory Write: Writes data from memory. 
3. I/O Read: Accepts data from input devices. 
4. I/O Write: Sends data to output devices. 

 These are communication process between the MPU and peripheral devices. 
 
 To communicate with the peripheral (or a memory location), the MPU needs the 

following steps. 
Step 1: Identify the peripheral or the memory location with its 
address. Step 2: Transfer binary information. 
Step 3: Provide timing or synchronization signals. 

To perform these functions using three sets of communication lines called buses 
 
 
 
 
 
 



Address Bus 

Data Bus 

Control Bus 

Output Input Memory 

 
 
 
 
 

8085 MPU 

 
 
 
 
 
 
 
 
Address bus 

 Group of 16 lines identified as A0 to A15. 
 The address bus is unidirectional. Bits flow in one direction- from the MPU to 

peripheral devices. 
 The MPU uses this bus to perform step1. 
 In computer, each peripheral or memory location is identified by a number called an 

address, used to carry 16-bit address. 
Data bus 

 Group of 8 lines are used for data flow. 
 Bi-directional data flow in both direction, between the MPU and memory and 

peripheral devices. 
 The MPU uses this bus to perform step2. 
 The 8 lines enable the MPU to manipulate 8-bit data ranging from 00 to FF(2 = 256 numbers). 

Control bus 
 This bus is comprised of various single lines that carry synchronization signals. 
 The MPU uses this bus to perform step3. 
 The MPU generates specific control signals for every operation it performs. 
 The MPU sends a pulse called Memory Read as the control signal. 
 The pulse activates the memory chip and the contents of the memory location are placed 



on the data bus. 
 
 
Input and output devices (I/O) devices 
 

 Input/output devices are the means through which the MPU communicates with “ the 
outside world”. 

 The MPU accepts binary data as input from devices such as keyboards and A/D 
converters and sends data to output devices such as LEDs or printers. 

I/Os with 8-bit addresses (peripheral-mapped I/O) 
 The MPU uses eight address lines to identify an input or an output device. This is 

known as peripheral-mapped I/O. 
 The eight address lines can have 256(2 combinations) address. MPU can identify 256 

input devices and 256 output devices with addresses ranging from 00H to FFH. 
 The input and output devices are differentiated by the control signals, the MPU uses the 

I/O read control signals for input devices and I/O write control signals for output 
device. 

 The steps in communicating with an I/O device are as follows. 
 The MPU places an 8-bit address on the address bus, which is decoded by 

external decode logic. 
 The MPU sends a control signal (I/O read or I/O write) and enables the I/O device. 
 Data are transferred using the data bus. 

I/O with 16-bit addresses (Memory-Mapped I/O) 
 The MPU uses 16 addresses lines to identify an I/O device. 
 An I/O is connected as if it is a memory register known as memory mapped I/O. 
 The MPU uses the same control signal and instructions as those of memory. 
 In some microprocessors, all I/Os have 16-bit addresses. I/Os and memory share the 

same memory map. 
 
 
 
8085 microprocessor architecture and memory interfacing 
 

The 8085 MPU 
 The term micro processing unit (MPU) is similar to the term central processing unit(CPU). 
 The MPU is a device or a group of devices that can communicate with peripherals 

provide timing signals, direct data flow, and perform computing tasks as specified by the 
instructions in memory. 

 The 8085 microprocessor can almost qualify as an MPU, but with the following 
two limitations. 
 The low-order address bus of the 8085 microprocessor is multiplexed (time –

shared) with the data bus. The buses need to be multiplexed. 
 Appropriate control signals need to be generated to interface memory and I/O 

with the 8085. 
8085 microprocessor 

 The 8085A is an 8-bit general-purpose microprocessor capable of addressing 64K of memory. 
 The device has forty pins, requires a +5v single power supply and can operate with a 3-



MHz single-phase clock. 
 The 8085 is an enhanced version of its predecessor 8080A meaning that 8085 instruction 

set includes all the 8080A instructions and some additional instructions. 
 The entire signal can be classified in to six groups. 

• Address – bus 
• Data-bus 
• Control and status signals 
• Power supply and frequency signals 
• Externally initiated signals 

 
 

 
 
 
 



 
 

 
 
 
 

Address 
The 16 signal lines which are used as the address bus are split in to two segments. 
A15-A8 are unidirectional and used for the most significant bits called the high-

order address. 
Multiplexed address/databus 

The signal lines AD7-AD0 are bidirectional. They serve a dual 
purpose. They are used as the low-order address bus as well as the 
data bus. 
During the earlier part, they are used as low-order bus. During the later part, they are 

used as databus. 
 
Control and Status Signals 

 
This includes two control signals (RD and WR) three status signals (I/O, S1 and S0) and 

one special signal (ALE) to indicate the beginning of the operation. 
ALE – Address Latch Enable 

This signal is used primarily to latch the low-order address from the multiplexed bus 



and generate a separate set of eight address lines A7 – A0. 
RD – Read 

This signal indicates that the selected I/O or memory device is to be read and data 
are available on the data bus. 
WR – Write 

This signal indicates that the data on the data bus are to be written into a selected memory or 
I/O location. 

IO/M 
 

This signal is used to differentiate between I/O and memory operations. When it is high, it 
indicates an I/O operation; when it is low, it indicates a memory operation. 

 
S1 and S0 

These signal signals, similar to IO/M can identify various operations, but they are rarely used in 
small systems. 

 
Power Supply and clock Frequency 

Vcc - +5v power supply 
Vss – ground reference 
X1, X2: a crystal is connected at three two pins. 
CLK (OUT) – clock output. This signal can be used as the system clock for other devices. 
 

EXTERNALLY INITIATED SIGNALS, INCLUDING INTERRUPTS 
 
The 8085 have five interrupt signals that can be used to interrupt a program execution. 
In addition to the interrupts, three pins-RESET, HOLD and READY-accept the 

externally initiated signals as inputs. 
INTR – interrupt request. 

This is used as a general purpose interrupts; it is similar to the INT signal of 
8080A. INTA- interrupt acknowledge. 

it is used to acknowledge an 
interrupt. RST 7.5, RST 6.5, RST 5.5 
– restart interrupts. 

It transfers the program control to specific memory locations. They have higher priority 
than the INTR interrupt. 
TRAP 

 
HOLD 

Non-maskable, highest priority interrupt. 
 

Indicates that a peripheral is requesting the use of the address and data buses. 



HLDA – hold acknowledge: 
Acknowledges the Hold request. 

READY 
This signal is used to delay the microprocessor read and write cycles until a slow responding 

peripheral is read to send or accept data. 
RESET IN 

When the signal on this pin goes low the program counter is set to zero. 
RESET OUT 

This signal indicates that the MPU is being reset. This signal can be used to reset other devices. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
DEMULTIPLEXING THE BUS AD7 – AD0 

 
 The address on the high-order bus (20H) remains on the bus for three clock periods. However, the 

low-order address (05H) is lost after the first clock period. 
 This address needs to be latched and used fro identifying the memory address. If the bus AD7- AD0 is used to 

identify the memory location (2005H), the address will change after first clock period. 

Instruction cycle 
It is defined as the time required to complete the execution of an instruction. The 8085 instruction 

cycle consists of one to six machine cycles or one to six operations. 

Machine cycle 
It is defined as the time required to complete one operation of accessing memory, I/O, or acknowledge 

an external request. This cycle may consist of three to six T-states. 

T-state 
It is defined as one subdivision of the operation performed in one clock period. These subdivisions 

are internal states synchronized with the system clock, and each T-state is equal to one clock period. 
 

Generating control signals 
 RD is used as a control signal. Because this signal is used both for reading memory and for reading an 

input device. 
 It is necessary to generate two different read signals: one for memory and another for input. 
 Four control signals are generated by combining the signals RD, WR, and IO/M. the signal IO/M goes 

low for the memory operation. 
 This signal is ANDed with RD and WR signals by using the 74LS32 quadruple two-input OR gates. 
 The OR gates are functionally connected as negative NAND gates. 
 When both input signals go low, the outputs of the gates go low and generate MEMR (memory read) and 

MEMW (memory write) control signals. 
 When the IO/M signal goes high, it indicates the peripheral I/O operation. 
 The signal is complemented using the hex inverter 74LS04 and ANDed with the RD and WR signals to 

generate IOR (I/O read) and IOW (I/O write) control signals. 
 The MPU can be interfaced with any memory or I/O. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 



 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

Block diagram of 8085 microprocessor 
 The internal architecture of the 8085 beyond the programmable registers it includes the 

 ALU (arithmetic/ logic unit) 
 Timing and control unit 



 Instruction register and decoder 
 Register array 
 Interrupt control 

Serial I/O control 
 
 

 
 
 
 
 

ALU (Arithmetic Logic Unit) 
 The arithmetic/logic unit performs the computing functions. 
 It includes the accumulator, the temporary register, the arithmetic and logic circuits and five flags. 
 The temporary register is used to hold data during an arithmetic/logic operation. 
 The result is stored in the accumulator and the flags are set or reset according to the result of the operation. 
 The flags generally reflect data conditions in the accumulator-with some expections. For the description of 

the flag [Refer page no: ]. 
  

 



Timing and control unit 
 The unit synchronizes all the microprocessor operations with the clock and generates the control signals 

for necessary communication between the microprocessor and peripherals. The RD and WR signals are 
sync pulses indicating the availability of data on data bus. 

 
 
 

Instruction register and decoder 
 The instruction register and the decoder are part of the ALU. When an instruction is fetched from memory, 

it is loaded in the instruction register. 
 The decoder decodes the instruction and establishes the sequence of events to follow. 
 The instruction register is not programmed and cannot be accessed through any instruction. 

 
Register array 

 In addition to the 8085 programmable registers, two additional registers called temporary registers W 
and Z are included in the register array. 

 These registers are used to hold 8-bit data during the execution of some instruction. 
 

Decoding and executing an instruction 
 Assume that the accumulator contains data byte 82H, and the instruction MOV C, A(4FH) is fetched. 
 To decode and execute the instruction, the following steps are performed. 

 
 The microprocessor: 

1. Places the contents of the data bus(4FH) in the instruction register and decodes the 
instruction. 

2. Transfers the contents of the accumulator (82H) to the temporary register in the ALU. 
3. Transfers the contents of the temporary register-to-register C. 

 
 
 
 
 

Example of an 8085-based microcomputer( 8085 single-board microcomputer system) 
 The 8085 MPU module includes devices such as the 8085 microprocessor, an octal latch and logic gates. 
 The octal latch demultiplexes the bus AD7-AD0 using the signal ALE, and the logic gates generate the 

necessary control signals. 
 The system includes interfacing devices such as buffers, decoders and latches. 
 It has a demultiplexed address bus, the data bus and the four active control signals: MEMR, MEMW, IOR, 

IOW. It uses a unidirectional bus driver for the address bus and bi-directional bus driver for the data bus. 
 
 



 
 
 

The 8085 machine cycles and bus timings 
 The 8085 microprocessor is designed to execute 74 different instruction types. Each instruction has 

two parts. 
 Operation code 
 Operand 

 The opcode is a command such as ADD. 
 The operand is an object to be operated on, such as a byte or the contents of a register. 
 All the instructions in a 8085 are divided into a few basic machine cycles are these are further divided into 

precise system clock periods. 
 The external communication functions can be divided into 3 categories. 

 Memory read and write 
 I/O read and write 
 Request acknowledge 

 The opcode fetch cycle by the status signals (IO/M = 0, S1 = 1, S0 = 1); the active low IO/M signal 



indicates that it is a memory operation, and S1 and S0 being high indicate that it is an opcode fetch cycle. 
Opcode fetch machine cycle 

The first operation is the opcode fetch. 
It needs to get the machine code from the memory register where it is before the 

microprocessor can begin to execute the instruction. 
The 8085 fetches the machine code, using the address and the data buses and the control 

signal. 
 

the code. 

 
The opcode fetch cycle is called the M1 cycle and has four T- states. 
The 8085 uses the first three states T1- T3 to fetch the code and T4 to decode and execute 

Memory read machine cycle 
 

 To illustrate Memory read machine cycle, we need to examine the execution of a 2-byte or 3- byte 
instruction because in a 1-byte instruction the machine code is an opcode fetching. Therefore the 
operation is always an opcode fetch. 

 Consider two machines codes- 0011 1110(3EH) and 0011 0010(32H) are stored in memory locations 
2000H and 2001H. 

 the first machine code represents the opcode to load the data byte in the accumulator, and the second 
code( 32H) represents the data byte to be loaded in the accumulator. 

 



 
Step 1: The first machine cycle M1 (opcode fetch) is identical in bus timings with the 
machine cycle except for the bus contents. 
 At T1, the microprocessor identifies that it is an opcode fetch cycle by placing 011 

on the status signals (IO/M = 0, S1 = 1 and S0 = 1). 
 It places the memory address (2000H) from the program counter on the address bus, 

20H on A15-A8, and 00H on AD7-AD0 and increments the program counter to 
2001H to point to the next machine code. 

Step 2: After completion of the opcode fetch cycle, the 8085 places the address 2001H on the 
address bus and increments the program counter to the next address 2002H. 
 The second machine cycle M2 is identified as the memory read cycle(IO/M = 0, S1 = 1 and S0 

= 0) and the ALE is asserted. At T2 the RD signal becomes active and enables the 
memory chip. 

Step 3: At the rising edge of T2, the 8085 activates the data bus as an input bus and memory 
places the data byte 32H on the data bus, and the 8085 reads and stores the byte in the 
accumulator during T3. 

 
Memory interfacing 

 Memory is an integral part of a microcomputer system. 
 While executing a program, the microprocessor needs to access memory quite 

frequently to read instruction codes and data stored in memory. 
 The interfacing unit enables this access. 
 Memory has certain signals requirements to write into and read from and write into memory. 
 The interfacing process involves designing a circuit that will match the memory 

requirements with the microprocessor signals. 
Memory structure and its requirements 
 A typical R/W memory chip has 2048 registers and each register can store eight bits 

indicated by eight input and eight output data lines. 
 The chip has 11 address lines A10 – A0, one chip select (CS) and two control lines 

read(RD) to enable the output buffer and write (WR) to enable the input buffer. 
 The internal decoder is also used to decode the address lines. 
 A typical EPROM(erasable programmable read-only memory) has 4096(4K) 

registers. It has 12 address lines A11- A0, one chip select (CS), and one read 
control signal. 

 
 
 
 
 



 
 
 

 
 
Basic concepts in memory interfacing 

The primary function of memory interfacing is that the microprocessor should be 
able to read from and write into a given register of a memory chip. To perform these 
operations, the microprocessor should 

 Be able to select the chip 
 Identify the register 
 Enable the appropriate buffer 

 The 8085 place a 16-bit address on the address bus, and with this address only one 
register should be selected. For the memory chip, only 11 address lines are required to 
identify 2048 registers. 

 We connect the low order address lines A10-A0 of the 8085-address bus to the memory chip. 
 The remaining address lines (A15 – A11) should be decoded to generate a chip 

select (CS) signal unique to that combination of address logic. 
 The 8085 provides two signals-IO/M and RD can be combined to generate MEMR 

control signal that can be used to enable the output buffer by connecting to the 
memory signal RD. 

 To write into a register, the microprocessor performs similar steps as it reads from a register. 
 The 8085 places the address and data and asserts the IO/M signal. 
 The IO/M and WR signals can be combined to generate the MEMW control 

signals that enables the input buffer of the memory chip and stores the byte in the 
selected memory register. 

 
 



 
 

Demultiplexed Address Bus 
 

 
 
 
Address decoding 

 This process is to identify a register for a given address. 
 The address lines (A11-A0) are connected to the memory chip and the 

remaining four address lines (A15-A12) are decoded. 
 Two methods of decoding these lines are 

 Using a NAND gate 
 3 to 8 decoder 

 The output of the NAND gate goes active and selects the chip only when all the address 
lines are at logic 1(A15-A12). 

 
 We can obtain the same result by using O7 of the 3 to 8 decoder, capable of decoding 

eight different input addresses. 
 Three lines can have eight different logic combinations from 000 to 111. each 

input combination is identified by corresponding output line. 
 If enable lines are active, the lines E1 and E2 are enabled by grounding and A15 must 

be at logic 1 to enable E3. 
 
 
 



 
 
Interfacing circuit 

 The above figure shows an interfacing circuit using a 3 to 8 decoder to interface the 
2732 EPROM chip. 

Step 1: The address lines A11-A0 are connected to pins A11-A0 of the memory chip to 
address 4096 registers. 
Step 2: The decoder is used to decode four address lines A15-A12. the output O0 of the 
decoder is connected to chip enable (CE). The CE is asserted only when the address on A15-
A12 is 0000. A15 enables the decoder and the output asserts the output O0. 
Step3: we need one control signal: memory read(MEMR), active low. The MEMR is 
connected to OE to enable output buffer. OE is same as RD. 

Address decoding and memory addresses 
 The logic levels on the address lines A15-A12 must be 0000 to assert the chip 

enable, and the address lines A11-A0 can assume any combinations from all 0s 
and 1s. the memory address of the chip ranges from 0000H to 0FFFH will be as 
follows. 

 
 The chip’s 4096 bytes of memory can be viewed as 16 pages with 256 lines each. The 

high- order hex digits range from 00 to0F, indicating 16 pages-0000H to 00FFH 
and 0100H to 01FFH. 



 
 
 

 
 

 

PROGRAMMING TO 8085  

INTRODUCTION THE 8085 INSTRUCTIONS 

 Each instruction in the program is a command, in binary, to the microprocessor to 
perform an operation. The entire group of instruction called the instruction set. The 
instruction can be classified into five different categories. 
 
Instruction 
  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Data transfer or copy instruction 
 The primary function of the microprocessor is copying data, from a register called the 

source to another register called the destination. This copying function is called as the 
data transfer function. 

 The data transfer instructions copy data from a source into a destination without 
modifying the contents of the source. 

 The data transfer instructions do not affect the flags 
 
 
 
 

Data transfer or copy 
 

Arithmetic 
 

Logical 
 

Branching 
 

Machine control 
 

UNIT V 
Programming the 8085: Introduction to 8085 Instructions ; Code conversion: BCD to 
Binary conversion – Binary to BCD conversion – BCD to seven segment LED code 
conversion – Binary to ASCII and ASCII to binary code conversion – BCD addition – BCD 
subtraction. 
 



Opcode Operand 
Description 

MOV Rd, Rs 
Move 
 This is a 1 byte instruction 
 Copies data from source register Rs to 

destination register Rd. 
MVI R, 8-bit 

Move Immediate 
 This is a 2 byte instruction 
 Loads the 8 bits of the second byte into the 

register specified. 

OUT 8-bit port address 
Output to Port 
 This is a 2-byte instruction 
 Sends the contents of the accumulator to the output port 

specified in the second byte. 
IN 8-bit port address 

Input from Port instruction 
 This is a 2-byte  
 Accepts data from the input port specified in the second byte, 

and loads into the accumulator. 
LXI Rp, 16-bit  Load register pair 

 Load 16-bit data in a register pair. 
 The second byte is loaded in the low-order register of 

the register pair. 
 The third byte is loaded in the high-order register 

pair. 
 There are four such instructions in the set. The operands B, 

D, and H represent BC, DE and HL 
register pairs. 



LDA 16-bit port 
address 

 
 
 

 

Load Accumulator Direct 
 This is a 3-byte instruction. 
 It copies the data byte from the memory location 

specified by the 16-bit address in the second and third 
byte. 

 The second byte is the low order memory address. 
 The third byte is the high-order memory address. 
 The addressing mode is direct. 

LDAX Rp 
Load Accumulator Indirect 
 This is a 3-byte instruction. 
 It copies the data byte from the memory location 

specified by the 16-bit address in the second and third 
byte. 

   The second byte is a low-order memory address. 
 The third byte is a high-order memory address. 
 The addressing mode is direct. 

STA 16-bit port 
address Store Accumulator Direct 

 This is a 3-byte instruction. 
 It copies data from the accumulator into the memory 

location specified by the 16-bit operand. 
STAX Rp Store Accumulator Indirect. 

 This is a 1-byte instruction. 
 It copies data from the accumulator to the memory 

specified by the content of either BC or 
DE registers. 

 
 
 
ARITHMETIC OPERATIONS 

 The arithmetic operations are add, subtract, increment and decrement. The add and 
subtract operations are performed in relation to the content of the accumulator. 

 The increment or the decrement operations can be performed in any register. 
 
 
 
 
 
 
 
 
 



 

Opcode Operand Description 

ADD 
R 

Add 
 This is a 1-byte instruction. 
 Add the contents of register R to the 

contents of th accumulator. 

ADI 
8-bit 

Add Immediate 
 This is a 2-byte instruction. 
 Adds the second byte to the contents of the 

accumulator. 
SUB R 

Subtract 
 This is a 1-byte instruction 
 Adds the second byte to the contents of the 

accumulator. 
SUI 8-bit 

Subtract Immediate 
 This is a 2-byte instruction 
 Subtracts the second byte from the contents of the 

accumulato 
INR R 

Increment 
 Increases the contents of register R by 1. 

DCR 
R 

Decrement 
 Decreases the contents of register R by 1. 

INX Rp Increment Register Pair. 
 This is a 1-byte instruction. 
 It treats the contents of two registers as one 16-bit 

number an increases the contents by 1. 
 The instruction set includes four instructions. 

DCX Rp 
Decrement Register Pair 
 This is a 1-byte instruction. 
 It decreases the 16-bit contents of a register 

pair by 1. 
 The instruction set includes four instructions. 

 
 
 
 
 
 
 
 
 



LOGIC OPERATIONS 
 The logic operations are performed in relation to the contents of the accumulator. 
 The logical instructions are AND, OR, EX OR and NOT. 

Opcode Operand Description 

ANA 
R 

Logical AND with Accumulator 
 This is a 1-byte instruction 
 Logically ANDs the contents of the register of 

the register R with the contents of the 
accumulator. 

ANI 8-bit 
AND Immediate with Accumulator 
 This is a 2-byte instruction. 
 Logically ANDs the second byte with the 

contents of the 
accumulator. 

ORA R 
Logically OR with Accumulator 
 This is a 1-byte instruction. 
 Logically ORs the contents of the register R with 

the contents of the accumulator. 
ORI 8-bit OR Immediate with Accumulator 

 This is a 2-byte instruction 
 Logically ORs the second byte with the 

contents of the accumulator. 
XRA R 

Logically Exclusive-OR with Accumulator 
 This is a 1-byte instruction. 
 Exclusive-ORs the contents of register R with 

the contents of the accumulator. 
XRI 8-bit 

Exclusive-OR Immediate with Accumulator 
 This is a 2-byte instruction. 
 Exclusive ORs the second byte with the 

contents of the 
Accumulator. 

CMA  
Complement Accumulator 
 This is a 1-byte instruction that complements 

the contents of the accumulator. 
 No flags are affected. 

RLC  Rotate Accumulator left 
 Each bit is shifted to the adjacent left position. 

Bit D7 becomes D0. 
 CY flag is modified according to bit D7. 



RAL  
Rotate Accumulator left through carry 
 Each bit is shifted to the adjacent left 

position. 
 Bit D7 becomes the carry bit and the carry bit is 

shifted into D0. 
 The carry flag is modified according to bit 

D7. 
RRC  

Rotate Accumulator right 
 Each bit is shifted right to the adjacent position. 

Bit D0 becomes D7. 
 The carry flag is modified according to bit 

D0. 
RAR  

Rotate Accumulator Right through Carry 
 Each bit is shifted right to the adjacent position. 

Bit D0 becomes the carry bit, and the carry bit 
is shifted into D7. 

CMP  
Compare with Accumulator 
 This is a 1-byte instruction. 
 It compares the data byte in register or 

memory with the contents of the 
accumulator. 

 If (A) < (R/M), the CY flag is set and the Zero flag 
is reset. 

 If (A) = (R/M), the Zero flag is set and the CY flag 
is reset. 

 If (A) > (R/M), the CY and zero flags are reset. 
CMI  

Compare Immediate with accumulator 
 This is a 2-byte instruction, the second byte 

being 8-bit data. 
 It compares the second byte with(A). 
 If (A) < 8-bit data, the CY flag is set and the Zero 

flag is reset. 
 If (A) = 8-bit data, the Zero flag is set, and the CY 

flag is reset. 
 If (A) > 8-bit data, the CY and Zero flags are 

reset. 
 
 
 
 
 
 
 



BRANCH OPERATIONS 
 The branch instructions allow the microprocessor to change the sequence of a 

program either conditionally or unconditionally. 
 All jump instructions in the 8085 are 3-byte instructions. The second byte specifies 

the low-order memory address and the third byte specifies the high-order memory 
address. 

CONDITIONAL JUMP 
 

Opcode Operand Description 
JC 16-bit Jump On Carry 

(if result generates carry and CY = 1) 
JNC 16-bit Jump On No Carry 

(CY = 0) 
JZ 16-bit Jump On Zero 

(if result is zero and Z = 1) 
JNZ 16-bit 

Jump On No Zero 
(Z = 0) 

JP 16-bit 
Jump On Plus 
(if D7 = 0, S = 0) 

JM 16-bit 
Jump On Minus 
(if D7 = 1, S = 1) 

JPE 16-bit Jump On Even Parity 
(P = 1) 

JPO 16-bit Jump On Odd Parity 
(P = 0) 

 
 

Unconditional jump 
The 8085 instruction set includes one unconditional jump instructions. 
 

Opcode Operand Description 

JMP 
16-bit 

Jump 
Enables the programmer to set up continuous loops 

 

 

 

 

 



ADDRESSING MODES 
 The various format of specifying the operands are called addressing modes. The 8085 

instruction set has the following modes. 

 
Direct addressing 

 Simply giving the complete binary address in memory is the most direct way to locate 
an operand or to give an address to jump. 

Example: LDA 3A 
The 8-bit address in the memory to be loaded into the accumulator 
 
Register addressing 

 The instruction specifies a register pair that contains the memory address where the 
data are located. 

Example: MOV Rd, Rs 
 It moves the content of source to the destination register. The operand is stored in 

one of the CPU register. 
Indirect addressing 

 The instruction indicates a register pair that contains the address of the next 
instruction to be executed. 

Example: MOV M, C 
 The above instruction moves the contents of the C register into the memory address 

stored in register pair. 
Immediate addressing 
 
 

 Immediate addressing refers to move the immediate data to any of the registers, 
accumulators or memory. 

 
Example: MVI R, data 
 The above example moves the value of R (immediate value of R) to the data. 
 The immediate addressing will have the data as a part of the instruction. 



 The move instructions will have immediate instructions MVI, similarly ADI, SUI, 
ANI etc., 

Implied/ implicit addressing 
 

 In implied/implicit addressing mode the operand is hidden and the data 
to be operated is available in the instruction itself 

Examples:  
 CMA (finds and stores the 1’s complement of the contains of 

accumulator A in A) 
 RRC (rotate accumulator A right by one bit)  
 RLC (rotate accumulator A left by one bit) 

 

CODE CONVERSION 
 
 BCD to BINARY Conversion 

Describe the procedure for BCD to binary conversion and write the 
program for the same. 
 The conversion of a BCD number into its binary equivalent employs the principle of 

positional weighting in a given number. 
For example 7210 = 7 X 10 + 2. 
 The digit 7 represents 70, based on its second position from the right, so its binary 

equivalent requires multiplying the second digit by 10 and adding the first digit. 
7210 = 0 1 1 1 0 0 1 0 

BCD1 = 0 0 0 0 0 1 1 1 
BCD2 = 0 0 0 0 0 1 1 1 

 Multiply BCD2 by 10, add the answer to the BCD1. 
 The multiplication of BCD2 by 10 can be performed by various methods. 

 
Location Program Explanations 

START LXI SP, STACK 
Initialize the stack pointer 

LXI H, 9000 Input buffer location 
LXI B, 9002 Output buffer location 

 
MOV A, M Move the content of the input to accumulator 
CALL BCDBIN Call the subroutine BCDBIN 
STAX B Store the accumulator content to B register 

 
 

 HLT Terminate the program 

BCDBIN 
PUSH B Save BC register 
PUSH D Save DE register 
MOV B, A Move the accumulator content to B register 
ANI 0FH Mask most significant four bits 



MOV C, A Move the accumulator content to C register. 
MOV A, B Move the B register to accumulator 
ANI F0H Mask the least significant four bits 
RRC Convert most significant four bits into unpacked BCD2 

MOV D, A Save BCD2 in D register 
XRA A A      00 
MVI E, OAH Set E as multiplier of 10 

SUM 
ADD E Add 10 until D = 0 
DCR D Decrement the D register by 1 
JNZ SUM  
ADD C Add BCD1 
POP D Retrieve previous contents 
POP E  
RET Return to calling subroutine 

 
BCD to BINARY conversation 

 The conversion of binary to BCD is performed by dividing the number by the powers 
by dividing the number by the power of ten; the division is performed by the 
subtraction method. 

 For example, assume the binary 
number is 1 1 1 1 1 1 1 1 FFH 
= 255 

 To represent this number in BCD requires 12 bits or three BCD digits labelled as BCD3 
(MSB), BCD2 and BCD3(LSB). 

 
0 0 1 0 0 1 0 1    0 1 0 1 

 
BCD3 BCD2 BCD1 

 The conversion can be 
performed as follows 

 Step 1: 
If the number is less than 100, go to step 2; otherwise, divide by 100 or subtract 100 repeatedly 
until the remainder is less than 100. the quotient is the most significant BCD digit BCD3. 
Step 2:   If the number is less than 10, go to step 3, other wise divide by 10 repeatedly until the remainder is less 
than 10. the quotient is BCD2. 
Step 3:  The remainder from step2 is BCD1. 

 
 
 
 
 
 
 
 
 
 
 



 
Location Program Explanations 
START LXI H, 8050 Point HL index where binary number is stored 

MOV A, M Move the content of memory to accumulator 
CALL BCD1 Call the subroutine BCD1 

BCD1 LXI H, 8060 Point HL index where the BCD number is stored 
MVI B, 64H Load 100 in register B 
CALL BCD2 Call conversion 
MVI B, 0A Load 10 in register B 
CALL BCD2 Call the BCD2 subroutine 
MOV M, A Move the accumulator content to memory location. 
RET Return 

BCD2 MVI M, FFH Load 255 to the memory location 
XX INR M Increment the memory location by one. 

SUB B Subtract the content of B register to accumulator 
JNC XX Subtract until less than power of 10. 
ADD B Add the content of B register pair 
INX H Increment the HL register pair 
RET Return 

 
BCD to seven segment LED code conversion 

 A set of three packed BCD numbers representing time and temperature are stored in 
memory locations starting at XX50 H. 

 The seven segment codes of the digits 0 to 9 for a common cathode LED are stored in 
memory locations at XX70H and the output buffer memory is reserved at 
XX90H. 

Location Program Explanation 
START LXI 

SP,STACK 
Initialize stack pointer 

LXI H, XX50 
H 

Point HL where BCD digits are stored 

MVI D, 03H Number of digits to be converted is placed in D. 
CALL 
UNPAK 

Call subroutine to unpack BCD numbers 

HLT End of conversion 
UNPAK LXI 

B,BUFFER 
Point BC index to the buffer memory 

NXTBCD MOV A, M Get packed BCD number 
ANI FOH Mask BCD1 
RRC Rotate four times to place BCD2 
RRC  
RRC  
RRC  
CALL 
LEDCOD 

Find seven segment code 

INX B Point to next buffer location 



 
 
 
 
 

 MOV A, M Get BCD number again 
ANI OFH Separate BCD1 
CALL 
LEDCOD 

 

INX B  
INX H Point to next BCD 
DCR D One conversion complete reduce BCD count 
JNZ 
NXTBCD 

If all BCDs are not yet converted, go back to convert next BCD 

LEDCOD PUSH H Save HL contents of the caller 
LXI H, 
CODE 

Point index to beginning of seven-segment code 

ADD L Add BCD digit to starting address of the code 
MOV L, A Point HL to appropriate code 
MOV A, M Get seven-segment code 
STAX B Store code in buffer 
POP H  
RET  

 
Binary to ASCII and ASCII to binary code conversion  
Binary to ASCII 
 

Location Program Explanation 
START LXI SP, 

STACK 
Initialize the stack pointer 

 LXI H, 9050 H Point where the value reside 
 LXI H, 9060 H Point where ASCII is stored 
 MOV A, M Move the content of memory location to accumulator 
 MOV B, A Move the accumulator to B register 
 RRC Rotate four times 
 RRC  
 RRC  
 RRC  
 CALL ASCII Call the subroutine 
 STAX D Store the accumulator to DC register pair 
 INX D Increment the D register 
 MOV A, B Move the B register to accumulator 
 CALL ASCII Call the subroutine 
 STAX D Store the accumulator to DC register pair 
 HLT Terminate the program 
ASCII ANI 0FH And immediate to the accumulator 

 CPI 0AH Compare the accumulator with data 
 JC CODE Perform the loop until accumulator is less than the value 



 ADI 07H Add 07 to accumulator 
CODE ADI 30H Add 30H to accumulator 

 RET Return 

 
 
 
 
 
ASCII to BINARY conversion 
 

Location Program Explanation 
ASCBIN LDA 6100 Load the content to the accumulator 

 CALL SUB Call the subroutine SUB 
 STA 6102 Store the accumulator content to 6102 
 HLT Terminate the program 
SUB SUI 30H Subtract immediately 30H from the accumulator 

 CPI 0AH Check whether number is between 0 and 9 
 RC If yes, return to main program 
 SUI 07H If not, subtract 7 to find number between A and F. 
 RET  

BCD addition 

 
Location Program Explanation 
START LXI SP, 

STACK 
Initialize the stack pointer 

 LXI H, 9000H  
 MVI C, 

COUNT 
Load register C with the count of BCD number to be added 

 XRA A Clear the accumulator 
 MOV B, A Move the accumulator to register 
NXT CALL 

BCDADD 
Call the subroutine 

 INX H Increment the HL register pair 
 DCR C Decrement the C register 
 JNZ NXT If all numbers are added goto next step otherwise go back 
 LXI H, 9063H Point index used to store the BCD1 first 
 CALL 

UNPACK 
Unpack the BCD stored in the accumulator 

 MOV A, B Move the B register to the accumulator 
 CALL 

UNPAK 
Call the subroutine 

 HLT Terminate the program 
BCDADD ADD M Add packed BCD byte and adjust it for BCD sum 

 DAA  
 RNC If no carry go back to next BCD 



 MOV D, A If carry is generated save the sum from the accumulator to D 
 MOV A, B Move the B register to accumulator 
 ADI 01H Add 01H 
 DAA Decimal adjust BCD from B 
 MOV B,A Save adjusted BCD in B 
 MOV A, D Place BCD1 and BCD2 in accumulator 
 RET Return 
UNPAK MOV D, A Save BCD number 

 ANI OFH Mask high order BCD 
 MOV M, A Store low order BCD 
 DCX H Point to next memory 
 MOV A, D Get BCD again 
 ANI F0H Mask low order BCD 
 RRC Convert the MSB bits to unpacked BCD 
 RRC  
 RRC  
 RRC  
 MOV M, A Move the content of accumulator to memory 
 DCX H Point to next memory location 
 RET Return 

 
BCD subtraction 

When subtracting two BCD numbers 

 
 Location Program Explanation 

SUBBCD MVI A, 
99H 

 

 SUB C Find 99’s complement 
 INR A Find 100’s complement 
 ADD B Add minuend to 100’s complement 
 DAA Adjust for BCD 
 RET Return 


	(X+Y)+Z = X+(Y+Z) (X.Y). Z = X. (Y.Z)
	BOOLEAN ALGEBRA RULES
	(X + Y) (X + Y) (X + Z)
	(X+Y) (X+Y’)
	1. X’ + Y’ = X’ . Y’
	Truth table for demorgan’s theorem
	(XY)’ + XY’ + XY = Z
	(XY)’ + X (Y’ + Y) = Z
	X’Y’Z’ + X’YZ ‘+ XY’Z’ + XYZ’ =A
	Programmable device:
	Numbers:
	Machine Language
	8085 Machine Language
	8085 Assembly Language
	High-Level Languages
	Operating systems:
	LARGE COMPUTERS:
	MEDIUM-SIZE COMPUTERS:
	MICRO COMPUTERS:
	PERSONAL COMPUTERS (PC):
	WORKSTATIONS:
	Programming to 8085
	Introduction the 8085 instructions
	Arithmetic operations
	Logic operations
	Branch operations
	Conditional jump

	Code conversion

