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B.Sc. COMPUTER SCIENCE-SEMESTER - III 
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 UNIT -I  

Algorithms (Analysis and design): Problem solving - Top-Down and Bottom- up approaches to 

algorithm design - Use of algorithms in problem solving - Design, Implementation, Verification of 

algorithm - Efficiency analysis of algorithms: Space, Time complexity, and Frequency count - 

Sample algorithms: Exchange the value of two variables - Summation of set of numbers - Decimal 

to Binary conversion - Sorting - Factorial - Fibonacci - Finding a largest Number in an array - 

Reverse the order of elements in array.  
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UNIT-I 
 

ALGORITHMS (ANALYSIS AND DESIGN) 
 
PROBLEM SOLVING 
 To solve a problem using computer to write step by step solution first and write simple instructions 

for each operation. 
 There might be a number of methods to solve the problem.  

 
These steps are:  
 Formulating the problem and deciding the data types to be entered.  
 Identifying the steps of computation that are necessary for getting the solution. 
 Identifying decision points. 
 Finding the result and verifying the values. 

Procedure for Problem Solving: 
 Problem solving is a logical process of breaking down the problem into smaller parts each of which 

can be solved step by step to obtain the final solution. 
 Step by step to obtain the final solution.  

Six basic steps in solving a problem are: 
 First spend some time in understanding the problem. This means try to formulate a problem 

correctly. 
 Construct a list of variables that are needed to find the solution of the problem. 
  Decide the layout for the output. 
 Select a programming method best suited to solve the problem and then only carryout the coding 

using a suitable programming language.  
 Test the program. Select test data so that each part of the program would be checked for correctness.  
 Finally use data validation steps to guard against processing of wrongly inputted data. 

1) Understanding the Problem: 
 Read each statement of the problem slowly and carefully by understanding the keywords. 
 Use paper and pencil to solve the problem manually for some test data.  

Ex:   Accept a value n and find the sum of first N even integers.  
Solution:  
 To take an input value, say a number 6 is given as the value of N. 
 Next get the 6 integer values. 
 The first 6 even integers are 2, 4, 6, 8, 10, and 12. 
 The sum is 42. 
 Hence the solution is to be made the sum of first 6 even integers.  

 
2) Construction of the list of variables: 
 The names chosen for the variables should be an aid to memory. 
 The variables may be I, SUM and COUNT as given below: 

 Generate even integers 2, 4, 6…. (I) 
 Total the sum of even integers 2+4+6…. (SUM) 
 Count the number of even integers 1, 2, 3…. (COUNT) 

 Finally 4 variables for this problem is  
 N    : To be entered by the user 
 I    : To generate even integers 
 COUNT: To keep the number of even integer that has been summed. 
 SUM    : An accumulator that will hold the current total value of even integers. 
3) Output design: 
 The output report should be easily understandable by a reader. 

Ex: No of first even integer’s    Total sum 
6 42 

 The output format should have the following characteristics 
• Attractive 
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• Easy to read and 
• Self-explanatory 

4) Program Development: 
 Draw a flowchart for the procedure for the steps 1, 2 & 3. 
 Standard symbols should be used for drawing a flow chart, Then draw a flowchart for each part 

separately and combine them together using connectors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
5) Testing the program:                                    
 Next run the program. 
 This means by giving known values to the variables and by checking the result and thus comparing 

results with manually calculated values. 
6) Validating the program: 
 The user of your program may enter values, which are not expected by the program. 
 Such values should be rejected by the procedure drawn by you, this known as validation of data. 

TOP DOWN AND BOTTOM UP APPROACHES TO ALGORITHM DESIGN 
1. Top- Down approach of problem solving:  
 Top down design is the technique of breaking down a problem into various sub tasks needed to 

be performed.  
 Each of these tasks is further broken down into separate subtasks and so on.  
 The entire solution of the problem modules and joining them together will make the complete task of 

solving the complex problem.  
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 In top down design we initially describe the problem we are working with at the highest or most 
general level.  

 All the operations at this level and individually break them down into simpler steps that begin to 
describe how to accomplish the tasks.  

 Top-down process involves working from the most general form, down to the most specific form. 
  
 
 
 
 
 
 
 
 
 

Fig: Top-Down modular design 
 
 
Advantages of Top-Down approach: 
 This approach allows analyst to remain “on top of “a problem and view the developing solution in 

the context. 
 The solution always proceeds from the highest level to the lowest level.  
 At each stage in the development the individual operation will be split up into a number of 

elementary steps. 
 By dividing the problem into a number of sub problems, it is easier to share problem development.  
 Bugs and debugging time grows quickly when the program is long. 
 Top-down characteristic helps in faster completion of the solution of the complex problem.  
 Increased comprehension of the problem.  
 Unnecessary lower-level details are removed. 
 Reduced debugging time. 

2. Bottom-Up approach of problem Solving: 
 A large and complex problem it may be difficult to solve. 
 It may be easier to solve parts of the problem individually, taking the easier aspects first and thereby 

gaining the insight and experience to tackle the more difficult tasks, and finally join each of the 
solutions together to form the complete solution. 

Disadvantages: 
 There may be a lack of consistency among modules and thus more reprogramming may have to be 

carried.  
 Parts of the solutions or programs may not fit together easily. 

 
USE OF ALGORITHMS IN PROBLEM SOLVING 
 Algorithm is a step-by-step procedure, which defines a set of instructions to be executed in a certain 

order to get the desired output.  
 If the algorithm is written in a language that the computer can understand then such a set of 

instructions is called a program. 
Rules: 
 The starting point can be implemented. 
 More than one starting point would create confusion about where to start, violating the ordering 

condition just stated. 
 Accept to identify one or more of the steps in the algorithms as terminators.  
 The characteristic of algorithms is that each individual operation must be both effective and well 

defined. 
 Effective means some formal method must exist for carrying out that operation and also getting an 

answer. 
 

Main 

Sub1 Sub2 

Get Process Put 
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Developing an Algorithm: 
 The errors they discover will usually lead to insertions, deletions or modifications in the existing 

algorithm. 
Characteristics of Algorithmic Language: 
 Unambiguous − Algorithm should be clear and unambiguous. Each of its steps (Or phases), and 

their inputs/outputs should be clear and must lead to only one meaning. 
 Input – An algorithm should have 0 or more well-defined inputs. 
 Output – An algorithm should have 1 or more well-defined outputs, and should match the desired 

output. 
 Finiteness − Algorithms must terminate after a finite number of steps. 
 Feasibility − should be feasible with the available resources. 
 Independent – An algorithm should have step-by-step directions, which should be independent of 

any programming code. 
Ex:   

To find the sum of the first K integers 
Begin 
 read k 
 if k<=0 

then 
  Write “illegal values for k” 

End 
else 

  set i to 1 
  set sum to 0 
  repeat k times 
   add i to sum 
   increment i by 1 
  end of the repeat loop 
  write “the sum of first “, k, “integer is “, sum 
End. 

 
DESIGN OF ALGORITHMS 
 An algorithm is set of simple instructions to be followed to solve a problem. 
 Each of the algorithms will involve a particular data structure. 
 A data structure including the type of data and the frequency with which various operations on data 

are applied. 
 
How to design an algorithm? 
 Algorithm design is a creative activity. Some common approaches for designing algorithms are 

 Greedy algorithm: 
 The greedy algorithm works in steps. 
 In each step this algorithm selects the best available option until all options finish 

Ex:  Shortest path algorithm 
 Divide and Conquer: 

 When the method is applied it often leads to a large improvement in time complexity. 
 A big problem is divided into same type of smaller problems  

Ex: Quick sort 
 Non-recursive Algorithm: 

 A set of instructions that perform a logical operation can be grouped together as a function. 
 If a function, which in turn invokes the calling function, then the technique is called as indirect 

recursion. 
 Randomized algorithm: 

 We can use the feature of random number instead of a fixed number. It gives different results 
with different input data. 

 Back track algorithms: 
 An  algorithm technique to find solutions by trying one of several choices if the choice proves 

incorrect, computation back tracks or restarts at the point of choice and tries another choice. 
 A back tracking algorithm is to write a function or procedure which traverse the solution space. 
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Ex: Game tree. 
 Modular programming approach: 

 The importance of splitting a problem into a series of self contained modules that becomes 
important. 

 A module should not exceed about 100 or 50 lines and should preferable be short enough to be 
on a single page.  

 The analysis of an algorithm provides information that gives us a general idea of how long an 
algorithm will take for solving a problem. 
 

IMPLEMENTATION OF ALGORITHM 
 After spelling out completely and precisely the requirements for each tasks and sub-tasks, it is time 

to code them into our programming language once the specification at the top levels are complete 
and precise, we should code the subprograms at these levels and test them appropriately. 

 
VERIFICATION OF ALGORITHM 
 Verification of algorithm would consist of determining the quality of the output received. 
 It is a process of measuring the performance of the program with any laid down standards. 

Algorithm verification should precede coding of the programmer. 
 
EFFICIENCY ANALYSIS OF ALGORITHM 
 An algorithm analysis provides information that gives us an idea of how long an algorithm will take 

for solving a problem. 
 A number of algorithms might be able to solve a problem successfully yet the analysis of algorithm 

gives us the scientific reason to determine which algorithm should be chosen to solve the problem 
most efficiently. 

 
(i) Space complexity: 
 Space complexity of a program is the amount of main memory in a computer. 
 It needs to run for completion. 
 The space needed by a program is the sum of the following components: 

 Fixed part that includes space for the code, space for simple variable and fixed size 
component variables as well as, space for constant etc. 

 Variable part that consist of the space needed by component variable whose size is 
dependent on the particular problem instance being solved and the stack space used by 
recursive procedure. 

(ii) Time complexity: 
 Time complexity of a program is the amount of computer time it needed to run a program 

completion. The time complexity may give time for 
 Best case 
 Worst case 
 Average case 

Best case: 
 The algorithm searches the elements in first time itself. 
 Best case takes shortest time it executes as it causes the algorithms to do the least amount of work. 

Worst case:  
 In worst case find the element of time at the end of the total time taken when searching elements 

fails. 
Average case: 
 Analyzing the average case behaviors of an algorithm is more complex than best case and worst 

case. 
 As the volume of data increases, average case of algorithm behaves like worst case algorithm.  

 
(iii) Frequency count: 
 To make an analysis machine independent it can be assumed that every statement will take the same 

constant amount of time for it execution. 



9 
 

 The time complexity can also expressed to represent by the frequency counts. One such notation for 
frequency count is order notation (‘O’ notation) 

‘O’ notation: ‘O’ notation is used to measure the performance of any algorithm. Performance of an 
algorithm depends upon the volume of input data. 

• O (1) to mean a computing time that us a constant. 
• O (n) is called linear, when all the elements of the linear list will be traversed. 
• O (log n) is when we divide linear list to half each time and traverse the middle element. 
• O (n log n) is when we divide list half each time and traverse that half portion  

SAMPLE ALGORITHMS 
(i) Exchanging the value of two variables: 
 Exchanging the value of two variables means interchanging their values. 
 Two variables x and y.  
 To swap or interchange the value of x and y. 
 Original values of x and y are  

Algorithm: 
 Begin 
 Get the values of variables x and y 
 Assign the value of x to t. 
 Assign the value of y to x. So x has original value of y now in place of the original value of x. 
 Assign the value of t to y. 
 Show the values of x any y 
 Stop 

ii) Summation of a set of numbers: 
• It is like adding numbers given in series. Computer can add two numbers at a time and retuen the 

sum of two numbers. 
• To Add N numbers, we initialize the variable location S, where to store sum, S=0. 
• S=S+a1  where a1 is the first number 
• S=S+a2  (the new value of S contains a1  +a2) 
• S=S+a2+a3  (the new value of S contains a1  +a2 +a3) 
• So till S=S+an 

Algorithm: 
1. Begin  
2. Read n numbers to be summed 
3. Initialize sum as 0 
4. Initialize count as 1 
5. While count is < or = to n numbers to be added, repeatedly do: 

a. Read the number at position count, when count is 1 read 1st number, when count is 2, read 
second number and so on. 

b. Update the current sum by adding to it the number read. 
c. Add 1 to count 

6. Write the sum of n numbers. (after the number at nth count has been added, the control will shift to 
step 7). 

7. stop 
iii) Reversing Digits of an Integer Number: 
Reversing digits basically means changing the digits order backwards. 
Input : 1 9 8 0 
Output:  0 8 9 1 
Algorithm: 
 Begin 
 Get positive integer number to be reversed. 
 While the integer number being reversed is greater than 10 repeatedly do: 
 Extract the right most digit of the number to be reversed by remainder function ie) function mod( 

). 
 Construct the reversed integer by writing the extracted digit to right hand side of the current 

reversed number 
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 Write the integer to the RHS of the reversed number  
 stop 

iv) Factorial of a given number: 
 The product of all positive integers from 1 to n is called the ‘factorial n’ or ‘n’ factorial. It is denoted 
by n! 
  5! = 1*2*3*4*5 =120 
  n!= 1*2*3*4*5 ….. (n-2) *(n-1) *n 
Where n is a + ve integer 
Algorithm:  
 Begin 
 Get the number of which the factorial is to be calculated ie) n. 
 Assign the value of i=1 and factorial =1 
 Calculate factorial n=factorial (n-1) *i 
 Increment the value of I by 1 ie) i=i+1 
 Repeat steps 4 & 5 till step 4 has been executed with the value of i=n 
 Write the value of factorial 
 Stop. 

v) Organize numbers in order (sorting): 
 Sorting of numbers means to arrange a given set of numbers in ascending or in descending order. 
Input:    50 60 10 8 1 6 12 
Output:   1  6  8 10 12 50 60  
Algorithm: 

1. Begin 
2. Read numbers and store them in an array of n elements i.e.) size of array a is n with elements as 

a[1],a[2],a[3],……a[n]. 
3. Find the smallest element within unsorted array. 
4. Exchange i.e.) swap smallest value of the array element and store it in 1st element of the unsorted 

part of array. 
5. Repeat steps 3 and 4 until all the elements in the array are arranged in the ascending order 
6. Stop. 
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RECURSION 
 A recursion function is a function that calls itself to perform a specific operation. 
 The process of a function calling itself is known as recursion. 
 Indirect recursion occurs when one function calls another function that then calls the first function. 

Ex: 1   
Find the factorial values for the values 1 to 5 

#include (stdio.h> 
int factorial( int value) 
{ 
if (value = = 1) 

return(1); 
else 
  return (value * factorial (value -1)); 
} 
void main(void) 
{ 
 Int I; 
 For (i=1; i<=5; i++) 
  Printf( “ The factorial of %d is %d \n”, i, factorial (i)); 
} 

Ex: 2       
Using recursion to complete the sum of integers from 1 to n 
Int sum(n) 
Int n; 
{ 
If( n<=1) 
       return n; 
Else 
       return (n+sum(n-1)); 
} 
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Question Bank 
Unit –I 

 
One word question and answers 
1. A natural number 1 is also a 

a. Prime number   b. real number  c. integer number  d. none of these 
2. Prime number is a number 

a. Divisible by 1  b. Divisible by 1and  by itself c. Divisible by 1and  by itself except the 
number 1 

b. None of the above 
3. Swapping of two numbers is done by 

a. Direct by interchanging their values with each others 
b. Storing the value of one in a temp variable and shifting the value of the other into the 

first and then copying the value of temp to the other 
c. Transfer one number to other number without storing any number in the temp variable 
d. None of the above. 

4. Sorting an array in the ascending order of numbers is the process of 
a. Putting the largest number first and smallest in the last 
b. Putting the smallest number first and the largest number in the last 
c. Putting the numbers in any way you desire 
d. None of the above 

5. The product of n natural numbers from 1 to n is called 
a. a. N!  b. n and p c. p and n  d. none of the above 

6. In analysis of algorithm, approximate relationship between the size of the job and the amount of work 
required to fo it is expressed by using: 

a. Order of magnitude  b. central tendency  c. differential equation d. none of these 
7. Which is better computing time? 

a. O(N)  b. O(N2)  c. O(log N)  d. none of these 
8. Modular programming uses 

a. Only top-down  b. only bottom-up method c. both a & b d. none of these 
9. A step- by –step process is called 

a. Flowchart  b. program  c. algorithm d. none 
10. A program calling itself is called 

a. Factorial  b. Fibonacci series  c. GCD  d. none  
 
Answers: 

1. C   2. C   3. B   4. B   5. A   6. A   7. C   8. C    9. C   10. B   
 

 
5 Marks 
1. What is data-structure? What are various data-structures available? 
2. What is algorithm? Why we need to design an algorithm? 
3. How will you understand a problem? 
4. How will you define a problem? 
5. What is top-down approach? Write advantages of it. 
6. What is bottom-down approach? Write advantages of it. 
7. How will you develop an algorithm? 
8. What is space complexity? 
9. What is time complexity? 
10. Write an algorithm for exchange two variables? 
11. Write an algorithm for Fibonacci sequence. 
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10 Marks 
 
1. Write notes on top-down approach with neat diagram. 
2. What are the uses of algorithms in problem solving? 
3. Give a brief notes on efficiency analysis of algorithms. 
4. Write an algorithm for a) organizing numbers in order b) factorial of a given number. 
5. Explain in detail about implementation and verification of an algorithm. 

 
------------------------------------ END------------------------------------ 
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UNIT-II 

 
DATA STRUCTURES 
 Data Structure is a way of collecting and organising data in such a way that we can perform operations 

on these data in an effective way. 
 Data Structures are the programmatic way of storing data so that data can be used efficiently. 
Overview of Data Structure: 
 

 
 
 
Categories of data structures:  

i) Linear data structure 
ii) Non linear data structure 

Linear data structure: 
 In linear data structures processing of data items is possible in linear function 

(ie, data can be processed One by one ). 

 
 Ex: Array, Linked list, stack & queue. 

 
Non-linear data structure: 
 The elements do not form a sequence. 
 Insertion and deletion is not possible in a linear function. 

 
 Ex: Trees and graphs 

 
 
ARRAYS: 
 An array is a collection of two or more adjacent memory locations. 
 The memory location containing same type of data. 
 These memory locations are called array elements which are given a particular symbolic name.  
 Array elements are accessed using their index number. 
 The index number that begins from zero. 
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Advantages: 
 Insertion and deletion can be done randomly. 
 At any location, it the start, somewhere at the middle or at the end. 

Disadvantages: 
 Insertion and deletion operation requires movement of large amount of data. 

LINKED LIST 
 A linked list is the chain of data items. 
 Data items are connected by pointers. 
 Each item contains a pointer. 
 The pointer to the address of next item. 

             
Types of linked lists are: 
 Singly linked list 
 Doubly linked list 
 Circular linked list 

 Singly linked list each node contains data and a single link which attaches it to the next node in the list. 
 Doubly linked list each node contains data and two links one to the previous node and one to the next 

node. 
 In circular linked list the last node, instead of pointing to NULL, points to the starting node.  
Advantages: 
 Quick insertion 
 Quick deletion 
 Insertion and deletion operations in a linked list are much easier 

Disadvantages: 
 Slow search 

STACK: 
 A stack is a linear data structure. 
 It is similar to an array. 
 Elements are added or removed only from one end of the list.  
 It is also known as Last-In-First-Out (LIFO). 
 A Stack is implemented as an array or a linked list.  

 
Advantages: 
 Provide last in first out access. 
Disadvantages: 
 Slow access to other items. 
4. QUEUES: 
 A queue is a linear data structure. 
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 Entries can be added or removed at either end but not in the middle.  
 Queue is also known as First-in- First –Out (FIFO) 
 Queue is implemented as arrays or linked lists.  

 
Advantages: 
 Provides first-in-first-out access 
Disadvantages: 
 Slow access to other items. 
Non-linear data structure: 
TREE: 
 Tree data structure is non-linear data structure. 
 A tree is a data structure that represents hierarchical relationships between individual data items. 

 
Fig: A tree structure  
 A tree consists of a collection of nodes which are connected by directed arcs. 
 A tree contains a unique first element known as the root, which is at the top of the tree structure. 
 A node with no children is called a leaf node. 
 Tree is a very flexible and powerful data structure that can be used for a wide variety of applications. 

Advantages: 
 Quick search, insertion and deletion if tree remains balance. 
 Easy to understand from the graphical view.  

Disadvantages: 
 Needs unnecessary traversal in order to reach a particular node. 

 
GRAPHS: 

 A graph is a pictorial representation. 
 Set of objects where some pairs of objects are connected by links. 
 The interconnected objects are represented by points termed as vertices. 
 The links that connect the vertices are called edges. 
 Formally, a graph is a pair of sets (V, E). 
 Where V is the set of vertices. 
 E is the set of edges, connecting the pairs of vertices. 
 Take a look at the following graph 
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Definition: 
 A graph is defined as a set of nodes or vertices. 
 Set of lines or edges or arcs that connect the two vertices. 

Types: 
1. Undirected graphs 
2. Directed graphs. 

Undirected Graph: 
 Edges are unordered pairs of vertices. 

 
Directed Graph: 
 A directed graph or digraph, the edges between nodes directionally oriented. 
 There are directed edges from A to B, B to C, and C to D & D to E. 
 The directed edges are also called an arc. 

    
Advantages: 

 Graphs are data structures which have wide ranging applications in real life, like analysis of 
electrical circuits, finding shortest routes, statistical analysis etc. 

 A directed graph is a natural way of describing, representing and analyzing complex projects 
which consists of may interrelated activities. 

 
ARRAYS 
 
Define array: 
 It is a linear data structure. 
 An array is a finite, ordered and collection of homogeneous data elements. 
 It contains only limited number of elements. 
 All the elements are stored one by one in contiguous locations of computer memory in a linear 

ordered.  
 All the elements of an array are of the same data type.  
 
Example 
Int  A [4];    Dim A [4]; 

 
ARRAYS TERMINOLOGY: 
 
Size:  
 Number of elements in an array is called the size of the array. 
 It is also called as length or dimension. 

Type:  
 Type of an away represents the kind of data type. 

Ex: int, string  
Base:  
 Base of an array is the address of memory location where the first element in the array is located. 

Index: 
 All the elements in an array can be referenced by subscript like Ai or A[i], this subscript is known as 

index. 
 Index is always as integer value. 
 Every element is identified by a subscripted or indexed variable. 
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Range of index: 

 
 Indices of array elements may charge from a lower bound (L) to an upper bound (U), which are 

called the boundaries of an array. 
Ex: 
Int A [100]:  The range of index is from 0 to 99. 
A: Array [-5…19] of integer:  The points of the rage is -5, -4, -3…18, 19.  
Here L is the lower bound. 
Formula is Index (ai) = L+i-1 
If the range of index varies from L…..U then the size of the away can be calculated as Size (A) = U-L+1 
Word: 
 It denotes the size of an element. In memory location computer can store an element of word size w. 
 This word size varies from machine to machine such as 1 byte to 8 bytes. 

 
ONE DIMENSIONAL ARRAY 
Definition: 
 Only one subscript /index is required to reference all the elements in an array then the array will be 

termed as one dimensional array. 

 
Example: 
 Declare a variable without using array, 

• int mark1; 
• int mark2; 

 Declare a variable using array, 
• int mark [3]; 

 
 
 
 
 
 

MEMORY ALLOCATION FOR AN ARRAY 
 The memory location where the first element can be stored is M. 
 If each element requires one word then the location for any element say A[i] in the array can be 

obtained as 
                     Address (A[i] = M+ (i-1) 
 An array can be written as A[L….U] , where L & U denote the lower and upper bounds for index. 
 If it is stored starting from memory locations and for each element it requires w number of words. 
 Then the address for a[i] will be  

    Address (A[i]) = M+ (i-L) * W 
 The formula is known as indexing formula which is used to map the logical presentation of an array 

to physical presentation. 
 
 
 
 

mark1 mark2 

X[0] X[1] 
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esz 
2. Sorting: 
 This operation if performed on an array will sort it in a specified order. 
 The algorithm is used to store the elements of an integer array in ascending order. 
Input : An array with integer data  
Output : An array with sorted element in an order according to ORDER ( ) 

Steps: 
i= U 
While i>= L do 

j=L    // start comparing from first 
While j< i do 

If ORDER (A[j, A[j+1]) = FALSE     // if A[j] and A[j+1] are not in order 
Swap (A[j], A [j+1])              // Interchange the elements 
End if 

j=j+1                                                             // Go to next statement 
  End while 

i=i-1 
End while 
Stop 

 Here order ( ) is a procedure to test whether two elements are in order and SWAP ( ) is a procedure 
to interchange the elements between two consecutive locations. 

 
 
3. Searching: 
 This operation is applied to search an element of interest in an array. 
Algorithm : Search array (key) 
Input : Key is the element to be searched 
Output : Index of key in A or a message on failure 

Steps: 
I=L, found=0, location=0 // found=0 indicates search is not finished and unsuccessful 
While (i<=U) and (found =0) do 
 If compare (A[i], key) = true then 
  Found=1 
  Location =i 
 Else 
  i=i+1 
  End if 
End while 

If found=0 then 
  Print “search is unsuccessful, key is not in the array “ 

Else 
  Print “search is successful: key is in the array at location “, location 

End if 
Return (location) 
Stop 

4. Insertion: 
 This operation is used to insert an element into an array provided that the array is not full. 

Algorithm: insert (key, location) 
Input : key is the item; location is the index of the element where it is to be stored. 
Output: array enriched with key 
Steps: 

If A [U] # NULL then 
Print “Array is full, no insertion possible”         
Exit 

Else 
While i> location do 
 A [i+1] =A[i] 
 i = i-1 
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  End while 
  A[location] =key 
  U=U+1 

End if 
Stop 

 
5. Deletion: 

This operation is used to delete a particular element from an array. The element will be deleted by 
overwriting it with its subsequent element and this subsequent element then is to be deleted. 
Algorithm: delete (key) 
Input: key is the element to be deleted. 
Output: slimed array without key 
Steps: 

i = search array (a, key) 
if i = 0 then 

Print “key is not found, no deletion” 
Exit 

Else 
While i< U do  
A[i] = A [i+1] 
i = i+1 

 End while   
End if 
A [U] = NULL  
U=U-1 
Stop 

6. Merging: 
 Merging is an important operation when we need to compact the elements from two different arrays 

into a single array. 
Algorithm: merge (A1, A2: A) 
Input: Two arrays A1 [L1…U1], A2 [l2…U2] 
Output: Result array A [L…U] , where L=L1 and U=U1+(U2-L2+1) when A1 is append after A2 
Steps: 

i1=L1, i2=L2;    // initialization of variables 
L=L1, U=U1+U2 –L2 +1   // initialization of lower and upper bounds of an array 
i=L 
Allocate memory for a[L…U] 
While i1<U do    // to copy array A1 into the first part of A 

A[i] = A1 [i1] 
i=i+1, i1=i1+1 

End while 
While i2<=U2 do    // to copy the array A2 into last part of A 

A[i] = A2 [i2] 
i=i+1, i2=i2+1 

End while 
Stop 

 
Application of Array: 
 Every programming language include this data type as a built in data type. 

Ex:  
To store records of all students in a class, the record structure is given by students. 
 

ROLLNO MARK1 MARK2 MARK3 TOTAL GRADE 
     (Alphanumeric)  (Numeric)   (Numeric)   (Numeric)         (Numeric)     (Character) 
 
 If sequential storage of records is not an objection, then we can store the records by maintaining 6 

arrays whose size is specified by the total number of students in the class. 
 ROLLNO     MARK1          MARK2  MARK3 TOTAL         GRADE 
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MULTIDIMENSIONAL ARRAYS  
Two dimensional Arrays: 
 Two dimensional arrays are the collection of homogeneous elements. 
 It also called matrix. 
 The elements are ordered in a number of rows and columns. 

 
Ex: 
 An (m x n) matrix where m denotes the number of rows and n denotes the number of columns.  
 The subscript of any arbitrary elements say (aij) represents the ith row and jth column.    

 
 
Memory Representation of a Matrix: 
 Matrix representation is a method used by a computer language. 
 Used to store matrices of more than one dimension in memory. 

 
 
Three dimensional arrays:   

 
 Three dimensional arrays have three indexes. 
 First index refers to dimension. 
 Second index refers to row. 
 Third index refers to column. 

Example: 
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Pointer Array 
 Address of memory variable or array is known as pointer and an array containing pointers as its 

elements is known as pointer array. 
 An array of pointers is an indexed set of variables in which the variables are pointers (a reference to 

a location in memory). 
Ex: 
 To store the marks of all students of computer science & engineering dept for a year, there are six 
classes, say cs1,cs2…..cs6 
 
STACKS 
 
Introduction 
 Stack is a linear data structure. 
 Very much useful in various applications of computer science. 
 Stack is a collection of elements in a Last-In-First-out fashion. 
 Stack is also called as LIFO. 

 
Ex: 

 Shunting of trains in a rail yard. 
 Shipment in a cargo. 
 Order supply in a restaurant. 
 Arrangements of books. 

Definition 
 A stack is an ordered collection of homogeneous data element.  
 Where the insertion & deletion operation take place at one end only.  
 Stack is also a linear data structure. 
 The insertion and deletion operations in case of stack are specially termed as PUSH and POP.  
 Where the operations are performed is known as TOP of the stack.  
 An element in a stack is termed as ITEM. 
 The maximum number of elements that a stack can accommodate is termed as SIZE.  

 
REPRESENTATION OF STACK 

 
 A stack representation in two ways 

1. Using one dimensional array. 
2. Single linked list 

 
 
 
 
 
 
 

https://www.computerhope.com/jargon/v/variable.htm
https://www.computerhope.com/jargon/p/pointer.htm
https://www.computerhope.com/jargon/m/memory.htm
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Array representation of stacks: 
 

 
 
 Allocate a memory block of sufficient size to accommodate the full capacity of the stack. 
 Then from the first location of the memory block, items of the stack can be stored in sequence mode. 
 Item denotes the ith item in the stack, l and u denote the index range of array in use, and these values 

are 1 and size. 
 Top is a pointer to point the position of array up to which it is filled with the items of stack. 
 There are two statuses 

 EMPTY: TOP < l 
 FULL    :  TOP >= u+l-1 

 
Linked list representation of stacks: 
 The size of the stack may vary during program execution. 
 Single linked list structure is sufficient to represent any stack. 

 
 
 
 
OPERATIONS ON STACKS 
 Basic operation required to manipulate stacks: 

(i) PUSH – To insert n item into the stack 
(ii) POP – To remove an item from a stack 

 (i) PUSH algorithm: 
Algorithm PUSH_A (ITEM) 
Steps: 

If   TOP > = SIZE then  
  Print “stack is full” 

Else 
            TOP= TOP+1; 

  A [TOP] = ITEM 
End if 
Stop   

 Array index varies from 1 to SIZE and TOP points the location of the current top-most item in the 
stack. 

(ii) POP Algorithm: 
Algorithm POP_A ( ) 
Steps: 

If   TOP < 1 then  
  Print “stack is empty” 

Else 
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ITEM=A [TOP] 
  TOP=TOP-1 

End if 
Stop   

 Next operation is to test the various states of a stack like whether it is full or empty, how many items 
are right now in it and read the current element at the top without removing it. 

Same operations can be defined for a Stack using Linked List: 
(i) PUSH Algorithm: 
Algorithm: PUSH_L (ITEM) 
Steps: 

new= GETNODE(NODE) 
new.DATA=NEW 
new.LINK=TOP 
TOP=new 
STACK_HEAD.LINK=TOP 
Stop 

 
(ii) POP Algorithm: 
Algorithm: POP_L ( ) 
Steps: 

If TOP = NULL 
print “ stack is empty” 
Exit 

Else 
ptr =TOP.LINK 
ITEM= TOP.DATA 
STACK_HEAD.LINK=ptr 
TOP=ptr 

End if 
Stop 
 

APPLICATIONS OF STACK 
 
 A classical application deals with evaluation of arithmetic expression; compiler uses a stack to 

translate input arithmetic expression into their corresponding object code.  
 Some machines are also known which use built-in-stack hardware called “stack machine”. 
 Another important application of stack is during the execution of recursive program, some 

programming languages use stacks to run recursive programs.  
 There are two scope rules known Static scope rule and dynamic scope rule.  
 Implementation of such scope rule is possible using stack known as run time stack. 

1. Evaluation of Arithmetic Expression: 
 An arithmetic expression consists of operands and operators. 
 Operands are variables or constant and operators are of various types like arithmetic unary and 

binary operators (+, -, Unary, *, /, ^, % ….) and relational operators (<, <=, >, >=, <>) and Boolean 
operators (AND, OR, NOT, XOR). 

 A simple arithmetic expression is  
  A+B 
 The problem to evaluate this expression is the order of evaluation. 
 There are two ways to fix it 

Operators Precedence Associativity 
(-) Unary, + (Unary) , NOT 6 - 
^ ( Exponentiation) 6 Right to Left 
*,  / 5 Left to Right 
+,  - 4 Left to Right 
<, <=,  + ,  >= , <> 3 Left to Right 
AND 2 Left to Right 
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OR, XOR 1 Left to Right 
 
Notations for arithmetic expressions: 
 There are 3 notations to represent an arithmetic expression infix, postfix and prefix. 
 The conventional way of writing an expression is called infix. 

Ex: 
 A +B, C-D, E * F, G/H  etc 
Infix notation: 
 The notation is  

 < Operand> <operator> <operand> 
 This is called infix because the operators come in between the operands.  

A +B  
Prefix notation: 
 The prefix notation on the other hand user the conventions.  

   <Operator> < Operand> <operand> 
 The operator comes before the operands.  

+AB 
 This notation was introduced by polish mathematician Jan Lukasiewicz and hence also termed as 

polish notation.  
Postfix notation: 
 The last notation is called the postfix (or) suffix notation where operators is suffixed by operands.  

< Operand> <operand><operator>   
  AB+ 
 This notation is just reverse to the polish notation; hence it is also alternatively termed as reverse 

polish notation. 
 An expression given in infix notation can be easily converted into its equivalent prefix or postfix 

notation. 
Rules for convert and infix expression into a postfix form: 
 Assume the fully parenthesized version of the infix expression. 
 Move all the operators so that they replace their corresponding right part of parentheses. 
 Remove all parentheses. 

Ex: 
Arrows point from operators to its corresponding right parenthesis  

( A * ( B +  ( C / D ) ) ) 
Operators are moved to their respective right parenthesis.  
Output: 
 ( A (B ( C D / ) + ) * ) 
 
 
Three notations for the given arithmetic expression: 
Infix : ( A * ( B +  ( C / D ) ) ) 
Prefix: ( * ( +  ( / C D ) B ) A ) 
Postfix: ( A (B ( C D / ) + ) * ) 
 In both the prefix and postfix equivalents of an infix expression, the variables are in the same 

relative positions. 
 The expressions in prefix or postfix form are completely parenthesis free. 
 The operators are rearranged according to the rules of precedence of operators. 
 Out of three notations, postfix notation has certain advantages over other notations from the 

computational point of view. 
 The main advantage is its evaluation. 
 During the evaluation of an expression in postfix notation it no more requires to scan the expression 

from left to right several times, but exactly once.  
Conversion of an infix expression to postfix expression: 
 A simple arithmetic expression containing +, -, *, / and ^ operators only. 
 The expression may be parenthesized or unparenthesized. 
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 First we have to append the symbol ‘)’ as delimiter at the end of a given infix expression and 
initialize the stack with ‘(‘. 
Symbol In stack priority In coming priority values 

+ - 2 1 

* / 4 3 
^ 5 6 
Operand 8 7 

( 0 9 

) - 0 
 There are two priority values  

 In stack priority 
 In coming priority values 

 A symbol will be pushed on to the sack if its incoming priority value is greater than the in-stack 
priority value of the top-most element. 

 Similarly a symbol will be popped from the stack if its in-stack priority value is greater that the in-
stock priority value of the top-most element. 

 Similarly a symbol will be popped from the stack if its in-stack priority value is greater or equal to 
the incoming priority value of the in-coming element. 

 
 
Function: 
READ-SYMBOL ( ) - From a given infix expression this will read the next- symbol. 
ISP(X) – Returns the in-stack priority value for a symbol x 
ICP(X) – Returns the incoming priority value for a symbol x 
OUTPUT(X)- Append the symbol x into the resultant expression. 
 
Algorithm: INFIX-TO-POSTFIX (E) 
Steps: 

TOP=0, PUSH (‘(‘)  
While (TOP > 0) do 

item = E.READ-SYMBOL( ) 
x=POP ( ) 
case: item=operand 

PUSH(X) 
OUTPUT (ITEM) 

case: item= ‘)’ 
While x # ‘(‘do 
 OUTPUT(X) 
 X=POP ( )  
End while 

case: ISP(X) > = ICP(ITEM) 
While (ISP(X) >= ICP (ITEM)) DO 
 OUTPUT(X) 
 X=POP () 
End while 
PUSH(X) 
PUSH (ITEM) 

case: ISP(X) < ICP(ITEM) 
PUSH(X) 
PUSH (ITEM) 

Otherwise: print “invalid expression” 
End while 
Stop 
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Ex: 
Infix form (A+B) ^ C-(D*E)/F) 
Symbol reading 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
 

Read symbol stack output 
Initial  (  
1 ((  
2 (( A 
3 ((+ A 
4 ((+ AB 

5 ( AB+ 

6 (^ AB+ 

7 (^ AB + C 

8 (- AB + C ^ 

9 (- ( AB + C ^ 

10 (- ( AB + C ^ D 

11 (- ( * AB + C ^ D 

12 (- ( * AB + C ^ DE 

13 (- AB + C ^ DE * 

14 (-  / AB + C ^ DE * 

15 (-  / AB + C ^ DE * F 

16  AB + C ^ DE * F / - 

 
Output: A B + C ^ DE * F / - (postfix form) 
 
 
EVALUATION OF POSTFIX EXPRESSION: 
 Algorithm EVAL_POSTFIX is to evaluate an arithmetic expression in postfix notation using a stack. 

Steps: 
Append special delimiter ‘# at the end of the expression 
item = E.READ_SYMBOL( ) // Read the first push into the stack 
While (item = “#”) do 

If (item = operand) then  // Operand is first push into the stack 
PUSH (item) 
Else      
op = item   // The item is an operator 
y = POP ( )    // The right most operand of the current operator 
x = POP ( )   // The left most operand of the current operator 
t = x op y   // Perform the operation with operator ‘op’ and operand x,y 
PUSH (t)   // Push the result into stack 
End If 
Item = E.READ_SYMBOL ( )  // Read the next item from E 

End While     
Value = POP ( )    // Get the value of the expression 
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Return (value) 
Stop 

Example: 
 Infix: A + ( B * C ) / D 
 Postfix: A B C * D / + 
 Input: A B C * D / + # with A = 2, B = 3, C = 4, and D = 6 
 
 
 
ALGORITHM FOR CONVERTING A POSTFIX EXPRESSION: 
Algorithm POSTFIX_TO_CODE (E) 
Input: An arithmetic expression E in postfix notation 
Output: Assembly code. 
Steps: 

Append delimiter ‘#’ at the end of the expression 
item=E.READ_SYMBOL( ) 
i=1, TOP=0 
While (item ≠ ‘#’) do 

case: item =operand 
PUSH (item) 
case: item=’+’ 

 X=POP ( ) 
Y=POP ( ) 
 PRODUCE_CODE (Y, X,’ADD’, Ti) 
 PUSH (Ti) 

case: item=’-’ 
X=POP ( ) 
Y=POP ( ) 
PRODUCE_CODE (Y, X,’SUB’, Ti) 
PUSH (Ti) 

case: item=’*’ 
X=POP ( ) 
Y=POP ( ) 
PRODUCE_CODE (Y, X,’MUL’, Ti) 
PUSH (Ti) 

case: item=’/’ 
X=POP ( ) 
Y=POP ( ) 
PRODUCE_CODE (Y, X,’DIV’, Ti) 
PUSH (Ti) 

Otherwise 
print “Error in input” 
Exit 

item =E.READ-SYMBOL( ) 
i=i+1 

End while 
stop 

Ex: 
 Infix: (A+B) *C/D 
 Postfix: AB+C*D/ 
  
 
3. IMPLEMENTATION OF RECURSION: 
 A recursion is termed as recursive if the procedure is defined by itself.  
 Factorial of given integer n: 

 
 
 
 

n! = n * (n -1) * (n-2) * …. * 3*2 *1 or n! =n * (n-1) 
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Algorithm: Factorial (n) 
Steps:  

fact =1 
for (i=1 to n) do 

Fact=i*fact 
end for 
return (fact) 
stop 

 Here step 2 defines the interactive definition for the calculation of factorial 
 
Algorithm: Factorial (N) // using recursion 
Steps: 

if (n=0) then 
1. Fact=1 

else 
1. Fact= n* factorial (n-1) 

endif 
return(fact) 
stop 
 
 Step 2 recursively defines the factorial of an integer N. This is actually a direct translation of n! = 

n*(n-1)! In the form of Factorial (n) = n* factorial (n-1). 
 
 
4. FACTORIAL CALCULATION: 
 
Algorithm: FACTORIAL_STACK(N) 

val =N, top=0, addr=step 10 
PUSH (val, addr) 
val=val-1, addr=step 7 
if (val=0) then 

1. Fact=1 
2. Go to step8  

else 
PUSH (val, addr) 
go to step3 

Endif 
fact=val*fact 
val=POP-PARAM( ), addr=pop_addr( ) 
Go to addr 

Return (fact)            
             

  



30 
 

UNIT II 
Question Bank 

 
 
One word question and answers: 
1. Which of these best describes an array? 

a) A data structure that shows a hierarchical behavior b) Container of objects of similar types 
c) Arrays are immutable once initialized d) Array is not a data structure      Answer: b 

2.  How do you initialize an array in C? 
a) int arr[3] = (1,2,3); b) int arr(3) = {1,2,3}; c) int arr[3] = {1,2,3}; d) int arr(3) = (1,2,3);   
 Answer: c 

3. What are the advantages of arrays? 
a) Objects of mixed data types can be stored b) Elements in an array cannot be sorted 
c) Index of first element of an array is 1 d) Easier to store elements of same data type  Answer: d 

4. In general, the index of the first element in an array is __________ 
a) 0 b) -1 c) 2 d) 1           Answer: a 

5. Elements in an array are accessed _____________ 
a) randomly b) sequentially c) exponentially d) logarithmically  Answer: a 

6. Process of inserting an element in stack is called ____________ 
a) Create b) Push  c) Evaluation d) Pop      Answer: b 

7. Process of removing an element from stack is called __________ 
a) Create b) Push  c) Evaluation d) Pop     Answer: d 

8. In a stack, if a user tries to remove an element from empty stack it is called _________ 
a) Underflow b) Empty collection c) Overflow d) Garbage Collection  Answer: a 

9. Pushing an element into stack already having five elements and stack size of 5, then stack becomes 
a) Overflow b) Crash c) Underflow d) User flow    Answer: a 

10. Entries in a stack are “ordered”. What is the meaning of this statement? 
a) A collection of stacks is sortable b) Stack entries may be compared with the ‘<‘ operation 
c) The entries are stored in a linked list d) There is a Sequential entry that is one by one      
Answer: d 

11. Which of the following applications may use a stack? 
a) A parentheses balancing program b) Tracking of local variables at run time 
c) Compiler Syntax Analyzer d) Data Transfer between two asynchronous process  Answer: d 

12. What is the value of the postfix expression 6 3 2 4 + – *: 
a) 1 b) 40 c) 74 d) -18         Answer: d 

13. Here is an infix expression: 4 + 3*(6*3-12). Suppose that we are using the usual stack algorithm to 
convert the expression from infix to postfix notation. 
The maximum number of symbols that will appear on the stack AT ONE TIME during the conversion of 
this expression? 
a) 1 b) 2 c) 3 d) 4        Answer: d 

14. The postfix form of the expression (A+ B)*(C*D- E)*F / G is? 
a) AB+ CD*E – FG /**  b) AB + CD* E – F **G / c) AB + CD* E – *F *G /  
d) AB + CDE * – * F *G /   Answer: c 

15. The data structure required to check whether an expression contains balanced parenthesis is? 
a) Stack  b) Queue c) Array d) Tree    Answer: a 

16. What data structure would you mostly likely see in a non recursive implementation of a recursive 
algorithm? 
a) Linked List b) Stack c) Queue d) Tree    Answer: b 

17. The process of accessing data stored in a serial access memory is similar to manipulating data on a 
________ 
a) Heap  b) Binary Tree c) Array d) Stack    Answer: d 

18. The postfix form of A*B+C/D is? 
a) *AB/CD+ b) AB*CD/+ c) A*BC+/D d) ABCD+/*    Answer: b 

19. Which data structure is needed to convert infix notation to postfix notation? 
a) Branch b) Tree  c) Queue d) Stack    Answer: d 
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20. The prefix form of A-B/ (C * D ^ E) is? 
a) -/*^ACBDE b) -ABCD*^DE c) -A/B*C^DE d) -A/BC*^DE   Answer: c 

21. What is the result of the following operation? 
Top (Push (S, X)) 
a) X  b) X+S  c) S  d) XS      Answer: a 

22. The prefix form of an infix expression (p + q) – (r * t) is? 
a) + pq – *rt b) – +pqr * t c) – +pq * rt d) – + * pqrt    Answer: c 

23. Which data structure is used for implementing recursion? 
a) Queue b) Stack c) Array d) List       Answer: b 

 
 

5 Marks 
1. Define array and its basic terminologies. 
2. Explain in detail about one dimensional array with an example. 
3. Explain in detail about multi dimensional array with an example. 
4. Write about memory allocation of an array. 
5. Write notes on stack representation. 
6. Explain in detail about evaluation on infix expression.  

10 Marks 
1. Write in detail on representation of an array. 
2. Give a brief note on operations on stack. 
3. Write notes on data structure and its types. 
4. Give a brief note on application of stack. 
5. Write an algorithm of infix to postfix conversion. 
6. Write an algorithm for factorial calculation. 

            
            
 __________END OF THE UNIT II   ___________     
         

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



32 
 

 
UNIT – III 

 
QUEUE 

 
What is Queue? 
 Queue is a simple but very powerful data structure. 
 Solve numerous computer applications. 
 It is Linear Data Structure. 
 Insert element at one end called Rear. 
 Delete element at another end called Front. 

 
Example: 

1. Queuing in front of a counter 
2. Traffic control at a turning point 
3. Process synchronization in multi-user environment 
4. Resource sharing in a computer centre. 

Definition: 
 Queue is an ordered collection of homogeneous data elements.  
 It permits insertion of new element at one end. 
 Deletion of an element at the other end.  
 The deletion (DEQUEUE) of an element take place is called front. 
  The insertion (ENQUEUE) of a new element can take place is called rear.  
 An element which enter first into the queue is the first element to delete from queue so it is called 

First In First out (FIFO)  
 
Representation of Queue: 
 There are two ways to represent a queue in memory: 

1. Using an array  
2. Using linked list 

1. Representation of queue using Array: 
 A queue is first in, first out (FIFO) data structure. 
 Inserting at one end (the rear). 
 Deleting from the other (the front). 

 
Algorithm Enqueue (Item) 
Steps: 

1. If (REAR=N) then 
1. Print “Queue is full” 
2. Exit 

2. Else 
1. If( REAR=0) and  (FRONT=0) 

                            1. FRONT=1 
2. Endif 
3. REAR=REAR+1 
4. Q[REAR]=ITEM 

3. Endif 
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4. Stop 
 
Algorithm DEQUEUE ( ) 
Step: 

1. If (Front=0) then 
1. Print “ Queue is empty” 
2. Exit 

2. Else 
1. ITEM=Q[FRONT] 
2. IF (FRONT=REAR) 

1. REAR=0 
2. FRONT=0 

3. ELSE 
1. FRONT=FRONT+1 

4. ENDIF 
3. End if 
4. Stop 

 
2. Representation of queue using Linked list: 
 Queue is a structure containing two pointers: 

1. Front 
2. Rear 

 Front: point to the head of the node. 
 Rear: point to the end of the list (last node). 
 Enque operates upon the rear pointer. 
 Deque operates upon the front pointer. 
 Empty queue is represented by NULL front & rear pointers. 

 
Various Queue Structure: 

1. Circular Queue 
2. Priority Queue 
3. Dequeue 

Circular Queue: 

 In a circular queue, all nodes are treated as circular. Last node is connected back to the first 

node. 

 Circular queue is also called as Ring Buffer. 

 Circular queue contains a collection of data which allows insertion of data at the end of the 

queue and deletion of data at the beginning of the queue. 
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Operation on Circular Queue: 

1. Insertion 
2. Deletion 

 
Insertion Algorithm 
 

Deletion Algorithm 

[Reset pointer position] 
If (R= =N) 
{ 

R1 
} 
Else 
{ 

RR+1 
} 
[Overflow] 
If (F= = R) 
{ 

“Queue is Empty” 
} 
Else 
{ 
Q[rear]X 
} 
[Is pointer] 
If (F= =0) 
{ 
F1 
} 
 

[Underflow] 
If (F= =0) 
{ 

“Queue is Empty” 
} 
Else 
{ 
                XQ[rear] 
} 
[Is the Front Pointer] 
If (F= = R) 
{ 

“Queue is Empty” 
} 
[Reset the Front] 
If (F= =N) 
{ 

“Queue is Empty” 
} 

 
 
 
 
Priority Queues 
 
 Insert & delete operation based on the priority. 
 If the elements in the queue are same priority, then the element deletes which is inserting first into 

the queue. 

 
Types of priority Queue: 

1. Ascending priority queue. 
2. Descending priority queue. 

1. Ascending priority queue: 
 Elements can be inserted in any order. 
 Elements deleted which is smallest element in the queue. 

2. Descending priority queue: 
 Elements can be inserted in any order. 
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 Elements deleted which is largest element in the queue. 
Operation of priority queue: 

1. Insertion – insert item into queue. 
2. Deletion – delete item from queue. 
3. Display   – display item in the queue. 

 
Dequeue: 
 
 It is used as a stack. 
 In queue all operations take place at one end of the queue. 
Example: 

 
 In enqueue, add an item to the back of the queue. 
 In dequeue, delete item from front of the queue. 
Example: 

 
 
 
Applications of Queues 
 
1. Simulation: 
 Simulation is a modeling of a real life problem (or) it is the method of a real life situation in the form 

of computer program. 
 The main objectives of the simulation to study the real life situation under the control of various 

parameters which affects the real problem, and is a reach interest of system analysts or operation 
research scientists. 

 Any process or situation that is to be simulated is called a system. 
 A system is a collection of interconnected objects which accepts zero or more inputs and produces at 

least one output.   
 A system is discrete if the input/output parameters are of discrete values. 

Ex: Ticket reservation 
 A system is stochastic is based on the randomness. 

Ex: Ticket counter. 
2.CPU scheduling in Multiprogramming Environment:  
    
 A Single CPU has to serve more than one program simultaneously. 
 Multiprogramming environments the CPU are categorized into three groups: 
 Interrupts to be serviced.  
 Verify of devices and terminals are connected with the CPU and they may interrupt at any moment 

to get a service from it. 
 Interactive users to be services. 
 These are mainly student’s programs in various terminals under execution. 
 Batch jobs to be services. 
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3. Round-Robin Algorithm: 
 Round-Robin (RR) algorithm, is a scheduling algorithm, and is designed for time sharing systems. 
 Suppose there are n processes P1, P2….Pn required to be served by the CPU. 
 Different processes require different execution time.  
 P1 comes first than P2 comes in general. 
 RR algorithm, first decides a small unit of time, called a time quantum/slice. 
 A time quantum is generally from 10 to 100 milliseconds. 
 CPU starts with P1. P1 gets CPU for instant of time; afterwards CPU switches to P2 and so on. 
 When CPU reaches the end of time quantum of Pn it returns to P1 and the same process will be 

repeated. 
 Implementation of RR scheduling algorithm circular queue is the best choice, because the process 

when it completes its execution required to be deleted from the queue and it is not necessarily from 
the front of the queue rather from any position. 

 
LINKED LISTS 
 
What is linked list? 
 Linked list are linear data structure. 
 Each node in the linked list is connected with its previous node which is a pointer to the node. 
 The nodes in the linked list can be added and deleted from the list. 
 The node have two field, 

1. Data 
2. Address 

 
Advantages: 

 Need not allocate memory beforehand. 
 Memory can allocated when necessary. 
 Facilitate dynamic memory allocation. 
 Insertion and deletion can be handled efficiently without fixing memory size. 
 Over array it uses exactly as much memory needs. The  size of an array is fixed when it is created. 

Disadvantage: 
 Traversal is sequential. 
 Does not support random access. 
 Increase overhead for storing pointers for linking the data items. 

Types of Linked List 
 Following are the various types of linked list. 

1. Single Linked List − Item navigation is forward only. 
2. Doubly Linked List − Items can be navigated forward and backward. 
3. Circular Linked List − Last item contains link of the first element as next and the first 

element has a link to the last element as previous. 
 
Single Linked List 
 A single linked list each node contains only one link which points the subsequent node in the list. 

 (i) Representation of a Linked List in Memory: 
 There are 2 ways to represent a linked list in a memory. 

1. Static representation using array 
2. Dynamic representation free pool of storage. 

Static representation:  
 Static representation of a single linked list maintains two arrays: 
 One array for data and other for links. 
 Two parallel arrays of equal size are allocated which should be sufficient to store the entire linked 

list.  
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Dynamic Representation: 
 The efficient way of representing a linked list is using free pool of storage.  
 There is a memory bank, and a memory manager. 
 During the creation of linked list, whenever a node is required the request is placed to the memory 

manager, memory manager will then search the memory bank for the block requested and if found 
grants a desired block to the caller.    

 
Operations on a single linked list: 

1. Insertion of a node in the before head node. 
2. Deletion of a node in the before head node. 
3. Insertion of a node in the middle of the list. 
4. Deletion of a node in the middle of the list. 
5. Insertion of a node after the last node. 
6. Deletion of a node after the last node 

1. Insertion of a node in the before head node: 
Algorithm: 
New_node  next = head; 
Head = next_node; 
 

 
2. Insertion of a node in the middle of the list. 
 
Algorithm: 
While (p1 = Insert position) 
{ 
P =pnext; 
} 
Store_next = pnext; 
P next = next_node; 
new_nodenext= store_next; 

 
3. Insertion of a node after the last node. 
Algorithm: 
While (p1 = next! =null) 
{ 
P =pnext; 
} 
P next = next_node; 
new_nodenext= null; 

 
4. Deletion of a node in the before head node. 
Algorithm 
node* delete (node *head, char d) 
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{ 
node *p,*q; 
q=head; 
p=headnext; 
if (qdata = ==d) 
{ 
head = p; 
delete (q); 
} 
else 
{ 
While (pdata!=d) 
{ 
P=pnext; 
Q=qnext; 
}} 
 
5. Deletion of a node in the middle and last of the list. 
Algorithm 
If (pnext = = null) 
{ 
qnext = null; 
delete (p); 
} 
Else 
{ 
qnext = pnext; 
delete (p); 
}} 
 

2. Doubly linked list 
 Each node contains data and two links, one link pointing to the previous node and one link pointing 

to the next node. 
 Suppose we are in middle, again traverse from starting node. This is drawback of singly linked list. 
 In Doubly linked list can be traversed forward and backward. 
 Each node there are 2 links are represented 
1. address of the previous item 
2. represent next item 

 
3. Circular Linked List 

 Circular Linked List is a variation of Linked list in which the first element points to the last element 
and the last element points to the first element. 

 Both Singly Linked List and Doubly Linked List can be made into a circular linked list. 
Singly Linked List as Circular 
 In singly linked list, the next pointer of the last node points to the first node. 

 
 
Doubly Linked List as Circular 

 In doubly linked list, the next pointer of the last node points to the first node and the previous 
pointer of the first node points to the last node making the circular in both directions. 

 
 As per the above illustration, following are the important points to be considered. 
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 The last link's next points to the first link of the list in both cases of singly as well as doubly linked 
list. 

 The first link's previous points to the last of the list in case of doubly linked list. 
Basic Operations 

 Following are the important operations supported by a circular list. 
1. Insert − Inserts an element at the start of the list. 
2. Delete − Deletes an element from the start of the list. 
3. Display − Displays the list. 

Insertion Operation 
 Following code demonstrates the insertion operation in a circular linked list based on single linked 

list. 
Example 
//insert link at the first location 
void insertFirst(int key, int data) { 
 struct node *link = (struct node*) malloc(sizeof(struct node)); 
   link->key = key; 
   link->data= data; 
    if (isEmpty()) { 
      head = link; 
      head->next = head; 
   } else { 
         link->next = head; 
          head = link; 
   }    
} 
Deletion Operation 
Following code demonstrates the deletion operation in a circular linked list based on single linked list. 
//delete first item 
struct node * deleteFirst() { 
   //save reference to first link 
   struct node *tempLink = head; 
  
   if(head->next == head) {   
      head = NULL; 
      return tempLink; 
   }      
 
   //mark next to first link as first  
   head = head->next; 
  
   //return the deleted link 
   return tempLink; 
} 
Display List Operation 
Following code demonstrates the display list operation in a circular linked list. 
//display the list 
void printList() { 
   struct node *ptr = head; 
   printf("\n[ "); 
  
   //start from the beginning 
   if(head != NULL) { 
      while(ptr->next != ptr) {      
         printf("(%d,%d) ",ptr->key,ptr->data); 
         ptr = ptr->next; 
      } 
   } 
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   printf(" ]"); 
} 
 
Application of Linked Lists 
 
1. Sparse matrix manipulation: 

 
 The fields I and j store the row & column for a matrix element. 
 Data field stores the matrix element at the ith row and the jth column. ie) aij. 
 The ROWLINK points to the next node in the same row and COLLINK points the next node in the 

same column. 
 All the nodes particularly in a row (column) are circular linked with each other each row (column) 

contains a header node. 
 A sparse matrix of order m*n, we have to maintain m headers for all rows and n headers for all 

columns, plus one extra node use of which can be evident. 
 
2. Polynomial 

 A polynomial is a mathematical expression consisting of a sum of terms. 
 Each term including a variable or variables raised to a power and multiplied by a coefficient.  
 An essential characteristic of the polynomial is that each term in the polynomial expression consists 

of two parts: 
1. one is the coefficient 
2. other is the exponent 

Example: 
10x2 + 26x 

10 & 26  Coefficients 
2 & 1  Exponential value. 

 
Points to keep in Mind while working with Polynomials: 

 The sign of each coefficient and exponent is stored within the coefficient and the exponent itself 
 Additional terms having equal exponent is possible one. 
 The storage allocation for each term in the polynomial must be done in ascending and descending 

order of their exponent 

 
 
 



41 
 

Representation of polynomial using linked list: 
 A polynomial can be thought of as an ordered list of non zero terms. Each non zero term is a two-

tuple which holds two pieces of information: 
1. The exponent part 
2. The coefficient part 
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UNIT-III 

Question Bank 
One word question and answers: 

1. A linear list of elements in which deletion can be done from one end (front) and insertion can take 
place only at the other end (rear) is known as a ? 
a) Queue b) Stack c) Tree  d) Linked list     Answer: a 

2. The data structure required for Breadth First Traversal on a graph is? 
a) Stack b) Array c) Queue d) Tree    Answer: c 

3. A queue follows __________ 
a) FIFO (First In First Out) principle b) LIFO (Last In First Out) principle c) Ordered array 
d) Linear tree    Answer: a 

4. Circular Queue is also known as ________ 
a) Ring Buffer b) Square Buffer c) Rectangle Buffer d) Curve Buffer Answer: a 

5.  If the elements “A”, “B”, “C” and “D” are placed in a queue and are deleted one at a time, in what 
order will they be removed? 
a) ABCD b) DCBA c) DCAB d) ABDC   Answer: a 

6. A data structure in which elements can be inserted or deleted at/from both the ends but not in the 
middle is? 
a) Queue b) Circular queue c) Dequeue d) Priority queue Answer: c 

7. A normal queue, if implemented using an array of size MAX_SIZE, gets full when 
a) Rear = MAX_SIZE – 1 b) Front = (rear + 1)mod MAX_SIZE 
c) Front = rear + 1 d) Rear = front      Answer: a 

8. Queues serve major role in ______________ 
a) Simulation of recursion b) Simulation of arbitrary linked list 
c) Simulation of limited resource allocation d) Simulation of heap sort Answer: c 

9. Which of the following is not the type of queue? 
a) Ordinary queue b) Single ended queue c) Circular queue d) Priority queue 
 Answer: b 

10. A linear collection of data elements where the linear node is given by means of pointer is called? 
a) Linked list b) Node list c) Primitive list  d) Unordered list Answer: a 

11. Consider an implementation of unsorted singly linked list. Suppose it has its representation with a 
head pointer only. 
Given the representation, which of the following operation can be implemented in O(1) time? 
i) Insertion at the front of the linked list  ii) Insertion at the end of the linked list 
iii) Deletion of the front node of the linked list iv) Deletion of the last node of the linked list 
a) I and II b) I and III c) I, II and III d) I, II and IV   Answer: b 

12. In linked list each node contain minimum of two fields. One field is data field to store the data 
second field is? 
a) Pointer to character b) Pointer to integer c) Pointer to node d) Node Answer: c 

13. The concatenation of two list can performed in O(1) time. Which of the following variation of 
linked list can be used? 
a) Singly linked list b) Doubly linked list c) Circular doubly linked list  
d) Array implementation of list   Answer: c 

14. What kind of linked list is best to answer question like “What is the item at position n?” 
a) Singly linked list b) Doubly linked list c) Circular linked list  
d) Array implementation of linked list  Answer: d 

15.  Linked lists are not suitable to for the implementation of? 
a) Insertion sort b) Radix sort c) Polynomial manipulation d) Binary search 
 Answer: d 

16. Linked list is considered as an example of ___________ type of memory allocation. 
a) Dynamic b) Static c) Compile time  d) Heap   Answer: a  

17.  In Linked List implementation, a node carries information regarding ___________ 
a) Data b) Link  c) Data and Link d) Node   Answer: b 

18. Linked list data structure offers considerable saving in _____________ 
a) Computational Time  b) Space Utilization 
c) Space Utilization and Computational Time d) Speed Utilization  Answer: c 
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19.  Which of the following points is/are not true about Linked List data structure when it is compared 
with array? 
a) Arrays have better cache locality that can make them better in terms of performance 
b) It is easy to insert and delete elements in Linked List 
c) Random access is not allowed in a typical implementation of Linked Lists 
d) Access of elements in linked list takes less time than compared to arrays  Answer: d 

20. Which of the following sorting algorithms can be used to sort a random linked list with minimum 
time complexity? 
a) Insertion Sort b) Quick Sort c) Heap Sort d) Merge Sort  Answer: d 

21. Which of the following is false about a doubly linked list? 
a) We can navigate in both the directions 
b) It requires more space than a singly linked list 
c) The insertion and deletion of a node take a bit longer 
d) Implementing a doubly linked list is easier than singly linked list    Answer: d 

22. How do you calculate the pointer difference in a memory efficient double linked list? 
a) head xor tail  b) pointer to previous node xor pointer to next node 
c) pointer to previous node – pointer to next node  
d) pointer to next node – pointer to previous node     Answer: b 

23. What differentiates a circular linked list from a normal linked list? 
a) You cannot have the ‘next’ pointer point to null in a circular linked list 
b) It is faster to traverse the circular linked list 
c) You may or may not have the ‘next’ pointer point to null in a circular linked list 
d) Head node is known in circular linked list      Answer: c 

24. Which of the following application makes use of a circular linked list? 
a) Undo operation in a text editor b) Recursive function calls 
c) Allocating CPU to resources  d) Implement Hash Tables Answer: c 

25. Which of the following properties is associated with a queue? 
a) First In Last Out b) First In First Out c) Last In First Out d) Last In Last Out 
 Answer: b 

26. What is the term for inserting into a full queue known as? 
a) overflow b) underflow c) null pointer exception   d) program won’t be compiled Answer: a 

27. What is the need for a circular queue? 
a) effective usage of memory b) easier computations c) to delete elements based on priority 
d) implement LIFO principle in queues  Answer: a 

28. In linked list implementation of queue, if only front pointer is maintained, which of the following 
operation take worst case linear time? 
a) Insertion   b) Deletion  c) To empty a queue  d) Both Insertion and To empty a queue Answer: d. 

29. In linked list implementation of a queue, where does a new element be inserted? 
a) At the head of link list b) At the centre position in the link list 
c) At the tail of the link list d) At any position in the linked list  Answer: c 
Explanation: Since queue follows FIFO so new element inserted at last. 

30. In linked list implementation of a queue, front and rear pointers are tracked. Which of these 
pointers will change during an insertion into a NONEMPTY queue? 
a) Only front pointer b) Only rear pointer c) Both front and rear pointer 
d) No pointer will be changed       Answer: b 
Explanation: Since queue follows FIFO so new element inserted at last. 

31. In linked list implementation of a queue, front and rear pointers are tracked. Which of these 
pointers will change during an insertion into EMPTY queue? 
a) Only front pointer b) Only rear pointer c) Both front and rear pointer  
d) No pointer will be changed  Answer: c 

32. In case of insertion into a linked queue, a node borrowed from the ____ list is inserted in the queue. 
a) AVAIL b) FRONT c) REAR d) NULL   Answer: a 

33. In linked list implementation of a queue, from where is the item deleted? 
a) At the head of link list b) At the centre position in the link list 
c) At the tail of the link list d) Node before the tail    Answer: a 
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34. In linked list implementation of a queue, the important condition for a queue to be empty is? 
a) FRONT is null b) REAR is null  c) LINK is empty d) FRONT==REAR- 
 Answer: a 

35. The essential condition which is checked before insertion in a linked queue is? 
a) Underflow b) Overflow c) Front value d) Rear value   Answer: b 
 

36. The essential condition which is checked before deletion in a linked queue is? 
a) Underflow  b) Overflow c) Front value d) Rear value  Answer: a 
 

37. Which of the following is true about linked list implementation of queue? 
a) In push operation, if new nodes are inserted at the beginning of linked list, then in pop operation, 
nodes must be removed from end 
b) In push operation, if new nodes are inserted at the beginning, then in pop operation, nodes must 
be removed from the beginning 
c) In push operation, if new nodes are inserted at the end, then in pop operation, nodes must be 
removed from end 
d) In push operation, if new nodes are inserted at the end, then in pop operation, nodes must be 
removed from beginning       Answer: a 

38. With what data structure can a priority queue be implemented? 
a) Array b) List c) Heap  d) Tree     Answer: d 

39. Which of the following is not an application of priority queue? 
a) Huffman codes b) Interrupt handling in operating system 
c) Undo operation in text editors d) Bayesian spam filter   Answer: c 

40. What is a dequeue? 
a) A queue with insert/delete defined for both front and rear ends of the queue 
b) A queue implemented with a doubly linked list 
c) A queue implemented with both singly and doubly linked lists 
d) A queue with insert/delete defined for front side of the queue    Answer: a 

41. What are the applications of dequeue? 
a) A-Steal job scheduling algorithm b) Can be used as both stack and queue 
c) To find the maximum of all sub arrays of size k d) To avoid collision in hash tables 
 Answer: d 

 
5 Marks 

1. Explain various representations of Queues. 
2. Discuss in detail about circular Queue and its implementation. 
3. Discuss in detail about circular De- Queue. 
4. Explain the applications of queues. 
5. Explain priority queue and its operations 

 
10 marks 

1. What is Queue? Why it is known as FIFO? Write an algorithm to insert and delete an element from a 
simple Queue. 

2. What are Circular Queue and Priority Queue? Write an algorithm to insert and delete an element 
from a Circular Queue. 

3. What do you mean by Link list? Write an algorithm to insert and delete a node in Singly Linked List. 
4. What is Doubly Linked List? Write an algorithm to insert and delete a node in Doubly Linked List. 
5. What is Circular Linked List? State the advantages and disadvantages of Circular Link List Over 

Doubly Linked List and Singly Linked List. Also write advantages of Linked List over an Array. 
 
 
 
 
 

_______________END____________ 
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UNIT-IV 
 
TREES 

Introduction about Trees: 
 A tree is a very flexible and powerful data structure that can be used for a wide variety of 
applications. 
 Each tree node contains a name for data and one or more pointers to the other tree nodes. 

 

 
 
Basic Terminology: 
 Node: Each element presents in a binary tree is called a node of that tree. 
 Parent: Parent of a node is the immediate predecessor of a node 
 Root: The element represent the base node of the tree is called the root of the tree. 
 Child: If the immediate predecessor of a node is the parent of the node then all immediate successors of 

a node are known as child. 
 Link: This is a pointer to a node in a tree. 
 Left and Right sub trees: Apart from the root, the other two sub sets of binary trees are binary trees. 

They are called the left and right sub trees of the original tree. 
 Leaf node:   A node that does not have any sons. 
 Degree: The number of sub trees of a node. 
 Interior or non-interior nodes: Nodes that have degree > 0. 
 Parent and child: The roots of the sub trees of a node are called the children of that node.  
 Siblings: Children’s of the same parent are said to be siblings. 
 Ancestors: The ancestors of anode are all the nodes along the path from the root of that node. 
 Level: The level of anode is defined by initially letting the root be at level1. If a node is at level p, then 

its children are at level P+1. 
 Height or depth: The height of a tree is defined to be the maximum level of any node in the tree. 
 Forest: A forest is a set of n>=0 disjoint trees. 
 Path length of a node: The number of edges needed to reach specified node form the root is called its 

path length. 
 Internal path:  The sum of path length of all the nodes in the tree. 
 
 
Simple Binary tree 
 

 
 

 A Binary Search Tree (BST) is a tree in which all the nodes follow the below-mentioned properties 
− 

1. The left sub-tree of a node has a key less than or equal to its parent node's key. 
2. The right sub-tree of a node has a key greater than to its parent node's key. 
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Definition and Concepts 
Binary trees: 

 A binary tree consists of a finite set of elements that can be partitioned into three distinct subsets 
called the root, the left and right sub tree. 

 If there are no elements in the binary tree it is called an empty binary tree. 
Full Binary Tree: 
 All nodes have two children. 
 Each sub-tree has same length of path. 

 
Complete binary tree:  
 All nodes have two children. 
 Each sub-tree has different length of path. 

 
 
REPRESENTATION OF A BINARY TREE  
Array representation 
 An array is used to store the nodes of the binary tree. 
 Nodes stored in the array area access sequentially. 
 Root is at index 0, and then left child and right child are stored. 

 

 
 
Linked representation of binary trees: 
 In linked list every element is represented as nodes. 
 A node consists of three fields such as, 

1. Left child 
2. Information node 
3. Right child 
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\ 
 The left child point to the left child of parent node. 
 The right child point to the right child of parent node. 
 The information holds the information of every node. 

 
                   

OPERATIONS ON A BINARY TREE 
 
 Insertion: To include a node into an existing binary tree. 
 Deletion: To delete a node from a non-empty binary tree. 
 Traversal: To visit all the nodes in a binary tree. 
 Merge: To merge two binary trees into a larger one.  

 
Insertion 

Algorithm Deletion Algorithm 

Algorithm for inserting 
a node: 

The node containing 
the data has no 
children 

The node containing the 
data has one children 

The node containing the 
data has two children 

Struct node* curr; 
Curr=root; 
While(curr) 
{ 
Parent=cur; 
If(tdata > currdata) 
{ 
Curr=currright; 
} 
Else 
{ 
Curr=currleft; 
} 
} 
If(tdata> parentdata) 
{ 
Parentright=t; 
} 
Else 
{ 
Parentleft=t; 
} 
} 

If(curr==parentleft) 
{ 
Parentleft=null; 
} 
 
Else 
{ 
Parentright=null; 
} 
Free(curr); 
} 
 

If(currleft!=null) 
{ 
If(curr==parentleft) 
{ 
Parentleft=curleft; 
} 
Currleft=null; 
Free(curr); 
} 

If(currleft!=null && 
curright!=null) 
{ 
Int t; 
T=currright; 
If(tright!=null && 
tleft==null) 
{ 
Currdata=tdata; 
Currright=tright; 
Tright=null; 
Free(t); 
} 

 
TRAVERSAL OF A BINARY TREE 

 Traversal is a process to visit all the nodes of a tree and may print their values. 
 That is, we cannot randomly access a node in a tree. 
 There are three ways which we use to traverse a tree − 

1. In-order Traversal 
2. Pre-order Traversal 
3. Post-order Traversal 



48 
 

 
In-order Traversal 

 In this traversal method, the left subtree is visited first, then the root and later the right sub-tree. 
 We should always remember that every node may represent a subtree itself. 
 If a binary tree is traversed in-order, the output will produce sorted key values in an ascending order. 

  
D → B → E → A → F → C → G 
 We start from A, and following in-order traversal, we move to its left subtree B. 
 B is also traversed in-order. The process goes on until all the nodes are visited. 
 The output of inorder traversal of this tree will be − 

Algorithm 
Until all nodes are traversed − 
Step 1 − Recursively traverse left subtree. 
Step 2 − Visit root node. 
Step 3 − Recursively traverse right subtree. 
Pre-order Traversal 

 In this the root node is visited first, then the left subtree and finally the right subtree. 

 A → B → D → E → C → F → G 
 We start from A, and following pre-order traversal, we first visit A itself and then move to its left 

subtree B. 
 B is also traversed pre-order. The process goes on until all the nodes are visited. 
 The output of pre-order traversal of this tree will be − 

Algorithm 
Until all nodes are traversed − 
Step 1 − Visit root node. 
Step 2 − Recursively traverse left subtree. 
Step 3 − Recursively traverse right subtree. 
Post-order Traversal 
In this traversal method, the root node is visited last, hence the name. First we traverse the left subtree, then the 
right subtree and finally the root node. 
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 D → E → B → F → G → C → A 
 We start from A, and following Post-order traversal, we first visit the left subtree B. 
 B is also traversed post-order. 
 The process goes on until all the nodes are visited. 
 The output of post-order traversal of this tree will be − 

Algorithm 
Until all nodes are traversed − 
Step 1 − Recursively traverse left subtree. 
Step 2 − Recursively traverse right subtree. 
Step 3 − Visit root node. 
 
TYPES OF BINARY TREES 
There are several types of binary trees 

1. Expression tree 
2. Binary search tree 
3. Heap tree 
4. Threaded binary tree 
5. Huffman binary tree 
6. Height balanced tree (AVL tree) 
7. Decision tree 

1. Expression tree: 
 An expression tree is a binary tree which stores an arithmetic expression. 
 The leaves of an expression tree are operand, such as constants or variable names and all internal 

nodes are the operators. 
 Expression tree is always a binary tree because an arithmetic expression contains either binary 

operator or unary operator. 

 
Operations on the expression tree: 

 There are two operations are possible on any expression tress: 
1. Traversing   
2. Evaluating 

 Traversal operations are same as binary tree such as inorder, preorder and postorder. 
 Evaluating of the expression is to evaluate the expression for which the tree is found. 

 
3. HEAP TREES 
 Heap is a binary tree such that the value at a node N is > or = the value at each of the children of 

node N. 
Min-Heap: 
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 Where the value of the root node is less than or equal to either of its children. 

 
Max-Heap: 
 Where the value of the root node is greater than or equal to either of its children. 

 
 
Representation of a heap tree:  

 A heap tree can be represented using linked structure.  
Operations on heap tree: 

1. Insert into a heap tree 
2. Deletion of a node 
3. Merging two heap trees 

1. Insert into a heap tree 
 This operation is used to insert a node into an existing heap tree satisfy the properties if heap tree. 

Step 1 − Create a new node at the end of heap. 
Step 2 − Assign new value to the node. 
Step 3 − Compare the value of this child node with its parent. 
Step 4 − If value of parent is less than child, then swap them. 
Step 5 − Repeat step 3 & 4 until Heap property holds. 
 

2. Deletion of a node from a heap tree: 
 Any node can be deleted from a heap tree. Deleting the root node has some special importance. 

Step 1 − Remove root node. 
Step 2 − Move the last element of last level to root. 
Step 3 − Compare the value of this child node with its parent. 
Step 4 − If value of parent is less than child, then swap them. 
Step 5 − Repeat step 3 & 4 until Heap property holds. 

3. Merging two heap tree 
 The two heap trees H1 and H2. Merging the tree H2 with H1 means to include all the nodes from H2 
to H1. H2 may be min heap or max heap and the resultant tree will be min heap if H1 is min heap else it will 
be max heap. 
This operation consists of two steps: 

1. Delete the root node say x from H2. 
2. Insert the node x into H1 satisfying the property of H1. 

RED-BLACK TREE 
A red-black tree is a binary search tree which has the following red-black properties: 

1. Every node is either red or black. 
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2. Every leaf (NULL) is black. 
3. If a node is red, then both its children are black. 
4. Every simple path from a node to a descendant leaf contains the same number of black nodes. 

 

 
   
 
 

GRAPHS 
Introduction: 
 Graph is another non-linear data structure.  
 It is hierarchical relationship between parent and children’s. 

Application: 
 Airlines 
 Source-destination network 
 Konigsberg’s bridges. 
 Flowchart of a program 

Graph Terminology: 
 
Graph:     

 A graph consist of two sets  
(i) A set V called set of all vertices (or node) 
(ii) A set E called set of all edges (or arcs)m  

Set of vertices = { 1,2,3} 
Set of edges={ (1,2),(1,3)} 

 
 
Digraph: 
 A digraph is also called a directed graph. If a graph G, such that G=<V,E>, where V is the set of all 

vertices and E is the set of ordered pair of elements from V. 
 Here G2 is a Digraph  where 

V = {v1, v2, v3, v4} 
E = {(v1, v2), (v1, v3), (v2, v3), (v3, v4), (v4, v1)} 

 Weighted graph: 
 A graph is termed as weighted graph if all the edges in it are labeled with some weight.  
 Ex: G3 and G4 are two weighted graphs. 

 
Adjacent vertices: 
 A vertex vi is adjacent to another vertex say vj if there is an edge from vi to vj. 
 Ex: Graph G11, v2 is adjacent to v3 and v4. 

Self loop: 
 If there is an edge whose starting and end vertices are same, that is (vi,vj) is an edge then it is called 

a self loop.  
 Ex: GraphG5  

Parallel edges: 
 If there are more than one edges between the same pair of vertices, then they are known as the 

parallel edge. 
 Ex: Graph G5. 
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Multi graph: 
 A graph which has either self loop or parallel edges or both is called multi graph. 
 Ex: Graph G5. 

Simple graph (digraph): 
 A graph if it does not have any self loop or parallel edges is called a simple graph. 
 Ex: graph G5. 

Complete graph: 
 A graph G is said to be complete if each vertex vi adjacent to every other vertex vj in G  
 Ex: Grapg G6 and G9. 

Acyclic graph: 
 If there is a path containing one or more edges which starts from a vertex vi and terminates into the 

same vertex then the path is known as a cycle. 
 Ex: graph G4 and G7. 

Isolated vertex: 
 A vertex is isolated if there is no edge connected from any other vertex to the vertex.  
 Ex: Graph G8. 

Degree of vertex: 
 The number of edges connected with vertex vi called the degree of vertex vi and is denoted by degree 

(vi). 
 In digraph there are two degrees: indegree and ourdegree. 
 Indegree of vi denoted as indegree(vi) = number of edges incident into vi. 
 Outdegree(vi) = number of edges emanating from vi. 
 Ex: In graph G4 indegree(v1)=2  outdegree(v1)=1 

indegree(v2)=2  outdegree(v1)=0 
Pendent vertex: 
 A vertex vi is pendent if its indegree(vi)=1 and outdegree (vi)=0  
 Ex: G8 is a pendent vertex. 

Connected graph: 
 In a graph G two vertices vI and vj are said to be connected if there is a path in G from vi to vj. 
 A graph is said to be connected if for every pair of distinct vertices vi, vj in G there is a path. 
 Ex: Graph G1, G3 and G6. 

 
 
REPRESENTATION OF GRAPHS 
 A graph can be represented in many ways  

1. Set representation 
2. Linked representation 
3. Sequential (matrix) representation 

(i) Set representation: 
 This is one of the straightforward methods of representing a graph. In this method two sets are 
maintained (i) V is the set of vertices 
       (ii) E is the set of edges. 
Graph G1 
 V(G1)= { v1,v2,v3,v4,v5,v6,v7} 
 E(G1)= { ( v1,v2), (v1,v3), (v2,v4), (v2,v5),(v3,v6),(v3,v7)} 
Graph G2 
 V(G2)= { v1,v2,v3,v4,v5,v6,v7} 
 E(G2)= { ( v1,v2), (v1,v3), (v2,v4), (v2,v5),(v3,v4),(v3,v6), (v4,v7),(v5,v7),(v6,v7)} 
 
Graph G3 
 V(G3)= { A,B,C,D,E} 
 E(G3)= { ( A,B), (A,C), (C,B), (C,A),(D,A),(D,B),(D,C),(D,E),(E,B)} 
Graph G4 
 V(G4)= { A,B,C,D} 
 E(G4)= { ( 3,A,C), (5,B,A), (1,B,C), (7,B,D),(2,C,A),(4,C,D),(6,D,B),(8,D,C)} 
 
(ii) Linked representation: 
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 Linked representation is another space-saving way of graph representation. 
 Node structure is, 

 
 Linked representation of graphs, the number of lists depends on the number of vertices in the graph. 
 The header node in each list maintains a list of all adjacent vertices of anode for which header node 

is meant. 
 
 
 
iii. Matrix Representation 
 The adjacency matrix is represents in 2D array of size n*n matrix in which n is the number of 

vertices. 
Ex: A[i][j]=1 means that the adjacency matrix has one edge. 
A[i][j]=0 means that the adjacency matrix has no edges. 

 
Adjacency matrix for undirected graph: 
 The adjacency matrix for an undirected graph is symmetric. 
 The adjacency matrix for a directed graph need not be symmetric. 
 The space needed to represent a graph using its adjacency matrix is n2   locations. 

 
OPERATIONS ON GRAPHS 
Insertion 
 To insert a vertex and hence establishing connectivity with other vertices in the existing graph 
 To insert an edge between vertices in the graph. 

 
Deletion 
 To delete a vertex from the graph. 
 To delete an edge from the graph. 

 
Merging 
 To merge two graph G1 and G2 into a single graph. 

 
Traversal      
 To visit all the vertices in the graph. 

 
Operations on Linked List Representation of Graphs: 
 In this representation using two representations. 
(i) An array of vertices having two fields: LABEL – label for the vertices, LINK-the pointer to the 

linked list. 
(ii) A linked list to maintain the list of all adjacent vertices for any vertex vi for which it is meant.  
(iii) A node structure has two fields other than the filed LINK.  
(iv) The first field WEIGHT is to store the weight of the edge and the second field LABLE to store 

the vertex’s label 
Insertion 
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 Insertion procedure differs for undirected graph and directed graph. 
 To insert of a vertex into an undirected graph, if Vx is inserted and Vi be its adjacent vertex Vi has to 

be incorporated in the adjacency list of Vx as well as has to be incorporated in the adjacency list of 
Vi.  

 If it’s a digraph and if there is a path from Vx to Vi we add a node for Vi into the adjacency list of Vx, 
if there is an edge from Vi to Vx add a node for Vx in the adjacency list of Vi. 

1) Algorithm INSERT_VERTEX_LL_UG(Vx, X) 
Vx is the new vertex that has to be inserted into a graph. 
Steps: 

1. N=N+1, Vx=N 
2. For i=1 to l do 

1. Let j=X[i] 
2. If (j>=N) then 

1. Print “No vertex labeled X[i] exist; edge from Vx into the list of vertices.” 
3. Else 

1. INSERT_SL-END(UGptr[N],x[i]) 
2. INSERT_SL-END(UGptr[j],Vx) 

4. Endif 
3. Endfor 
4. Stop 

 
 
2) Algorithm INSERT_VERTEX_LL_DG(Vx, X,Y) 
Vx is the new vertex that has to be inserted into a graph. 
Steps: 

1. N=N+1, Vx=N 
2. For i=1 to m do 

1. Let j=X[i] 
2. If (j>=N) then 

1. Print “No vertex labeled X[i] exist; edge from Vx to X[i] is not established” 
3. Else 

1. INSERT_SL-END (DGptr[N],x[i]) 
                                 4. Endif 

3. Endfor 
4. For i=1 to n do 

1. Let j=Y[i] 
2. If (j>=N) then 

1. Print “No vertex labeled Y[i] exist; edge from Vx to X[i] is not established” 
3. Else 

1. INSERT_SL-END (DGptr[j],Vx) 
                                 4. Endif 

5. Endfor 
6. stop 

 
3) Insert the edge between two vertices in Undirected graph: 
Algorithm: INSERT_EDGE_LL_UG(Vi,Vj) 
  Insert the edge to be inserted between vertices Vi and Vj. 
Steps: 

1. Let N=number of vertices in the graph 
2. If(Vi>N) or (Vj>N) then 

1. Print” Edge is not possible between Vi and Vj” 
3. Else 

1. INSERT_SL_END (UGptr[Vi],Vj” 
2. INSERT_SL_END (UGptr[Vj],Vi” 

4. Endif 
5. Stop 
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4)Insert the edge between two vertices in directed graph: 
Algorithm: INSERT_EDGE_DG (Vi,Vj) 
 Insert the edge to be inserted between vertices Vi and Vj. 
Steps: 

1. Let N=number of vertices in the graph 
2. If(Vi>N) or (Vj>N) then 

1. Print” Edge is not possible between Vi and Vj” 
3. Else 

1. INSERT_SL_END (UGptr[Vi],Vj”) 
4. Endif 
5. Stop 

 
 
Deletion: 
1) Delete the vertex: 
Algorithm Delete_Vertex_LL_UG (Vx) 
Step: 

1. If (N=0) then 
1. Print” Graph is empty : No deletion” 
2. Exit 

2. Endif 
3. ptr=UGptr[Vx] . LINK 
4. While(ptr ≠  NULL) do 

1. j=ptr.LABEL 
2. DELETE_SL_ANY(UGptr[j],Vx) 
3. DELETE_SL_ANY(UGptr[Vx], j) 
4. ptr=UGptr[Vx].LINK 

5. Endwhile 
6. UGptr[Vx].LABEL=NULL 
7. UGptr[Vx].LINK=NULL 
8. RETURN_NODE(ptr) 
9. N=N-1 
10. Stop 

 
2) To delete the edge between vertices Vi and Vj 
Algorithm: Delete_Edge_LL_UG(Vi,Vj) 

1. let N=number of vertices in the graph 
2. if(Vi>N ) or ( Vj >N) then 

1. Print “Vertex does not exist: Error in edge removal” 
3. Else 

1. DELETE_SL_ANY(UGptr[Vi],Vj) 
2. DELETE_SL_ANY(UGptr[Vj],Vi) 

4. Endif 
5. Stop 

 
 
GRAPH TRAVESAL 
 
In the traversal of a binary tree there are two ways as follows. 
 Depth First search 
 Breadth first search 

Depth First Search:          
 Depth First Search (DFS) algorithm traverses a graph in a depthward motion and uses a stack to 

remember to get the next vertex to start a search, when a dead end occurs in any iteration. 
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 As in the example given above, DFS algorithm traverses from S to A to D to G to E to B first, then 

to F and lastly to C. 
 It employs the following rules. 

1. Rule 1 − Visit the adjacent unvisited vertex. 
2. Mark it as visited. 
3. Display it. 
4. Push it in a stack. 
5. Rule 2 − If no adjacent vertex is found, pop up a vertex from the stack. 
6. It will pop up all the vertices from the stack, which do not have adjacent vertices. 
7. Rule 3 − Repeat Rule 1 and Rule 2 until the stack is empty. 

Breadth First Search: 

 Breadth First Search (BFS) algorithm traverses a graph in a breadthward motion and uses a queue to 
remember to get the next vertex to start a search, when a dead end occurs in any iteration. 

 
 As in the example given above, BFS algorithm traverses from A to B to E to F first then to C and G 

lastly to D. It employs the following rules. 

1. Rule 1 − Visit the adjacent unvisited vertex. 

2. Mark it as visited. 

3. Display it. 

4. Insert it in a queue. 

5. Rule 2 − If no adjacent vertex is found, remove the first vertex from the queue. 
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6. Rule 3 − Repeat Rule 1 and Rule 2 until the queue is empty. 

 
APPLICATION OF GRAPH STRUCTURES    
 Graph is an important data structure whose extensive applications are known in almost all 

application areas. 
 Conversion of a particular problem into this general graph theoretic problem will rest on the reader.  

1. Shortest path problem 
2. Topological sorting of a graph 
3. Spanning trees 

 
SHORTEST PATH PROBLEM 
 The shortest path problem is about finding a path between 2 vertices in a graph such that the total 

sum of the edges weights is minimum. 
 To find shortest problem, we have three algorithm, 

1. Floyd & Warshall’s Algorithms 
2. Dijkstra’s Algorithm 

Warshall’s Algorithms: 
 This is a classical algorithm by which we can determine whether there is a path from any vertex Vi 

to another vertex Vj either directly or through one or more intermediate vertices.  
Steps: 
11. For i=0 to N do 

1. For j=1 to N do 
 1. P[i][j]= Gptr[i][j] 
2. Endfor 

12. End for 
13. For k=1 to N do 

1. For i=1 to N do 
1. For j=1 to N do 

  1. P[i][j]= P[i][j] v (P[i][k] ^ P[k][j]) 
 2. Endfor 
      2. Endfor 

14. End for 
15. Return(p) 
16. Stop 
 
 
 
Floyd’s Algorithm: 
 The basic structure of the Floyd’s algorithm is same as Warshall’s algorithm. 

Steps: 
1. For i=1 to N do 

1. For j=1 to N do 
 1.  If (Gptr[i][i] =0) then 
  1. Q[i][j]=∞ 
                        2. PATHS[i][j]=NULL 
 2. Else 
  1. Q[i][j]=Gptr[i][j] 
  2. P=COMBINE (i,j) 
  3. PATHS[i][j]=P 
 3. Endif 
2. Endfor 

2. Endfor 
3. For k=1 to N do 

1. For i=1 to N do 
1. For j=1 to N do 

  1. Q[i][j]= MIN(Q[i][j], Q[i][k]+ Q[k][j]) 
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  2. If (Q[i][k]+ Q[k][j]< Q[i][j]) then 
   1. p1= PATHS[i][k] 
   2. p2= PATHS[k][j] 
   3. PATHS[i][j]=COMBINE(p1,p2)  
  3. Endif 
 2. Endfor 
      2. Endfor 

4. End for 
5. Return (Q, PATHS) 
6. Stop 

 
Dijkstra’s Algorithm: 
 
 Dijkstra’s algorithm solves the single-source shortest-paths problem on a directed weighted graph G 

= (V, E), where all the edges are non-negative. 
Example 
 Let us consider vertex 1 and 9 as the start and destination vertex respectively. 
 Initially, all the vertices except the start vertex are marked by ∞ and the start vertex is marked by 0. 

Vertex Initial Step1 
V1 

Step2 
V3 

Step3 
V2 

Step4 
V4 

Step5 
V5 

Step6 
V7 

Step7 
V8 

Step8 
V6 

1 0 0 0 0 0 0 0 0 0 

2 ∞ 5 4 4 4 4 4 4 4 

3 ∞ 2 2 2 2 2 2 2 2 

4 ∞ ∞ ∞ 7 7 7 7 7 7 

5 ∞ ∞ ∞ 11 9 9 9 9 9 

6 ∞ ∞ ∞ ∞ ∞ 17 17 16 16 

7 ∞ ∞ 11 11 11 11 11 11 11 

8 ∞ ∞ ∞ ∞ ∞ 16 13 13 13 

9 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 20 

 Hence, the minimum distance of vertex 9 from vertex 1 is 20. And the path is 
1→ 3→ 7→ 8→ 6→ 9 

 
 
Topological Sorting: 
 Topological sorting is an ordering of vertices of a graph, such that if there is a path from u to v in the 

graph then u appears before v in the ordering. 
 A topological ordering is not possible if the graph has a cycle, since for two vertices u and v on the 

cycle, u precedes v and v precedes u.  
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 A simple algorithm to find a topological ordering is to find out any vertex with in degree zero, that is 
vertex without any predecessor. 
 

 
Algorithm: 
Begin 
   Initially mark all nodes as unvisited 
   For all nodes v of the graph, do 
      If v is not visited, then 
         TopoSort (i, visited, stack) 
   Done 
   Pop and print all elements from the stack 
End. 
 
 
MINIMUM SPANNING TREE 

 A spanning tree is a subset of Graph G, which has all the vertices covered with minimum possible 
number of edges. 

 Hence, a spanning tree does not have cycles and it cannot be disconnected. 
 A disconnected graph does not have any spanning tree. 

 
 There are two methods are efficient: 

1. Kruskal’s algorithm  
2. Prim’s Algorithm 

Kruskal’s Algorithm: 
 Kruskal's algorithm to find the minimum cost spanning tree uses the greedy approach. 
 This algorithm treats the graph as a forest and every node it has as an individual tree. 
 A tree connects to another only and only if, it has the least cost among all available options and does not 

violate MST properties. 
 To understand Kruskal's algorithm let us consider the following example − 

 
Step 1 - Remove all loops and Parallel Edges 

 Remove all loops and parallel edges from the given graph. 
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Step 2 - Arrange all edges in their increasing order of weight 

 The next step is to create a set of edges and weight, and arrange them in an ascending order of weightage 
(cost). 

 
Step 3 - Add the edge which has the least weightage 

 Now we start adding edges to the graph beginning from the one which has the least weight.  
 In case, by adding one edge, the spanning tree property does not hold then we shall consider not 

including the edge in the graph. 

 
 The least cost is 2 and edges involved are B, D and D,T. 
 We add them. Adding them does not violate spanning tree properties, so we continue to our next edge 

selection. 
 Next cost is 3, and associated edges are A,C and C,D. We add them again − 

 
 Next cost in the table is 4, and we observe that adding it will create a circuit in the graph. − 

 
 We ignore it. In the process we shall ignore/avoid all edges that create a circuit. 

 
 We observe that edges with cost 5 and 6 also create circuits. 
 We ignore them and move on. 

 
 Now we are left with only one node to be added. 
 Between the two least cost edges available 7 and 8, we shall add the edge with cost 7. 
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 By adding edge S, A we have included all the nodes of the graph and we now have minimum cost 

spanning tree. 
 
Prim’s Algorithm: 

 Prim's algorithm to find minimum cost spanning tree. 
 Prim's algorithm, treats the nodes as a single tree and keeps on adding new nodes to the spanning tree 

from the given graph. 
Example − 

 
Step 1 - Remove all loops and parallel edges 

 
 Remove all loops and parallel edges from the given graph. 
 In case of parallel edges, keep the one which has the least cost associated and remove all others. 

 
Step 3 - Check outgoing edges and select the one with less cost 

 After choosing the root node S, we see that S, A and S,C are two edges with weight 7 and 8, 
respectively. We choose the edge S, A as it is lesser than the other. 

 
 Now, the tree S-7-A is treated as one node and we check for all edges going out from it 
 We select the one which has the lowest cost and include it in the tree. 

 
 After this step, S-7-A-3-C tree is formed. Now we'll again treat it as a node and will check all the edges 

again. 
 However, we will choose only the least cost edge. 
 In this case, C-3-D is the new edge, which is less than other edges' cost 8, 6, 4, etc. 
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 After adding node D to the spanning tree, we now have two edges going out of it having the same cost, 

i.e. D-2-T and D-2-B. 
 Thus, we can add either one. 
 But the next step will again yield edge 2 as the least cost. 
 Hence, we are showing a spanning tree with both edges included. 
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UNIT- IV 
Question Bank 

One word question and answers: 
1. How many children does a binary tree have? 

a) 2 b) any number of children c) 0 or 1 or 2 d) 0 or 1  Answer: c 
2. What is/are the disadvantages of implementing tree using normal arrays? 

a) difficulty in knowing children nodes of a node 
b) difficult in finding the parent of a node 
c) have to know the maximum number of nodes possible before creation of trees 
d) difficult to implement       Answer: c 

3. What must be the ideal size of array if the height of tree is ‘l’? 
a) 2l-1 b) l-1 c) l d) 2l       Answer: a 

4. What are the children for node ‘w’ of a complete-binary tree in an array representation? 
a) 2w and 2w+1 b) 2+w and 2-w c) w+1/2 and w/2 d) w-1/2 and w+1/2  
 Answer: a 

5. Advantages of linked list representation of binary trees over arrays? 
a) dynamic size b) ease of insertion/deletion c) ease in randomly accessing a node 
d) both dynamic size and ease in insertion/deletion    Answer: d 
 

6. 2. Disadvantages of linked list representation of binary trees over arrays? 
a) Randomly accessing is not possible  
b) Extra memory for a pointer is needed with every element in the list 
c) Difficulty in deletion 
d) Random access is not possible and extra memory with every element  Answer: d 
 

7. 3. Which of the following traversing algorithm is not used to traverse in a tree? 
a) Post order b) Pre order c) Post order d) Randomized    Answer: d 
 

8. 4. Level order traversal of a tree is formed with the help of 
a) breadth first search b) depth first search c) dijkstra’s algorithm d) prims algorithm
 Answer: a 
 

9. 5. Identify the reason which doesn’t play a key role to use threaded binary trees? 
a) The storage required by stack and queue is more 
b) The pointers in most of nodes of a binary tree are NULL 
c) It is Difficult to find a successor node d) They occupy less size Answer: d 

10. What may be the psuedo code for finding the size of a tree? 
a) find_size(root_node–>left_node) + 1 + find_size(root_node–>right_node) 
b) find_size(root_node–>left_node) + find_size(root_node–>right_node) 
c) find_size(root_node–>right_node) – 1 
d) find_size(root_node–>left_node + 1      Answer: a 
 

11. What is the maximum number of children that a binary tree node can have? 
a) 0 b) 1 c) 2 d) 3       Answer: c 

12. The following given tree is an example for? 

 
a) Binary tree b) Binary search tree c) Fibonacci tree d) AVL tree Answer: a 

13.  A binary tree is a rooted tree but not an ordered tree. 
a) true  b) false    Answer: b 

14. How many common operations are performed in a binary tree? 
a) 1 b) 2 c) 3 d) 4    Answer: c 

15. What is the traversal strategy used in the binary tree? 
a) depth-first traversal b) breadth-first traversal c) random traversal d) Priority traversal
 Answer: b 

https://www.sanfoundry.com/wp-content/uploads/2018/07/binary-tree-operations-questions-answers-q2.png
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16. How many types of insertion are performed in a binary tree? 
a) 1 b) 2 c) 3 d) 4       Answer: b 

17. The average depth of a binary tree is given as? 
a) O(N) b) O(√N) c) O(N2) d) O(log N)   Answer: d 

18. How many orders of traversal are applicable to a binary tree (In General)? 
a) 1 b) 4 c) 2 d) 3       Answer: d  

19. If binary trees are represented in arrays, what formula can be used to locate a left child, if the node 
has an index i? 
a) 2i+1 b) 2i+2  c) 2i d) 4i     Answer: a 

20.  Using what formula can a parent node be located in an array? 
a) (i+1)/2 b) (i-1)/2 c) i/2 d) 2i/2     Answer: b 

21. Which of the following properties are obeyed by all three tree – traversals? 
a) Left subtrees are visited before right subtrees 
b) Right subtrees are visited before left subtrees 
c) Root node is visited before left subtree 
d) Root node is visited before right subtree     Answer: a 

22. The number of edges from the root to the node is called __________ of the tree. 
a) Height b) Depth c) Length d) Width   Answer: b 
 

23. The number of edges from the node to the deepest leaf is called _________ of the tree. 
a) Height b) Depth c) Length d) Width   Answer: a 

24. What is a full binary tree? 
a) Each node has exactly zero or two children b) Each node has exactly two children 
c) All the leaves are at the same level d) Each node has exactly one or two children  
          Answer: a 
 

25. What is a complete binary tree? 
a) Each node has exactly zero or two children 
b) A binary tree, which is completely filled, with the possible exception of the bottom level, which 
is filled from right to left 
c) A binary tree, which is completely filled, with the possible exception of the bottom level, which 
is filled from left to right 
d) A tree In which all nodes have degree 2     Answer: c 
 

26. What is the average case time complexity for finding the height of the binary tree? 
a) h = O(loglogn) b) h = O(nlogn) c) h = O(n) d) h = O(log n)  Answer: d 
 

27. Which of the following is not an advantage of trees? 
a) Hierarchical structure b) Faster search c) Router algorithms d) Undo/Redo operations 
in a notepad  Answer: d 
 

28. In a full binary tree if number of internal nodes is I, then number of leaves L are? 
a) L = 2*I b) L = I + 1 c) L = I – 1 d) L = 2*I – 1   Answer: b 
 

29. In a full binary tree if number of internal nodes is I, then number of nodes N are? 
a) N = 2*I b) N = I + 1 c) N = I – 1 d) N = 2*I + 1   Answer: d 

30. In a full binary tree if there are L leaves, then total number of nodes N are? 
a) N = 2*L b) N = L + 1 c) N = L – 1 d) N = 2*L – 1   Answer: d 

31. Which of the following tree data structures is not a balanced binary tree? 
a) AVL tree b) Red-black tree c) Splay tree d) B-tree  Answer: d 

32.  Which of the following data structures can be efficiently implemented using height balanced binary 
search tree? 
a) sets      b) priority queue c) heap   d) both sets and priority queue  Answer: d 

33. Heap can be used as ________________ 
a) Priority queue b) Stack c) A decreasing order array d) Normal Array 
          Answer: a 

34. What is the space complexity of searching in a heap? 
a) O(logn) b) O(n)  c) O(1)  d) O(nlogn)    Answer: b 
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35. What is the best case complexity in building a heap? 
a) O(nlogn) b) O(n2) c) O(n*longn *logn) d) O(n)   Answer: d 

36. Which of the following statements for a simple graph is correct? 
a) Every path is a trail  b) Every trail is a path c) Every trail is a path as well as every path 
is a trail  d) Path and trail have no relation   Answer: a 

37. A graph with all vertices having equal degree is known as a __________ 
a) Multi Graph b) Regular Graph c) Simple Graph d) Complete Graph  
          Answer: b 
Explanation: The given statement is the definition of regular graphs. 

38. Which of the following ways can be used to represent a graph? 
a) Adjacency List and Adjacency Matrix b) Incidence Matrix c) Adjacency List, 
Adjacency Matrix as well as Incidence Matrix d) No way to represent  Answer: c 

39. Space complexity for an adjacency list of an undirected graph having large values of V (vertices) 
and E (edges) is ___________ 
a) O(E) b) O(V*V) c) O(E+V) d) O(V)    Answer: c 

40. Time complexity to find if there is an edge between 2 particular vertices is _________ 
a) O(V) b) O(E)  c) O(1)  d) O(V+E)   Answer: a 

41. Which of the following is/are the operations performed by kruskal’s algorithm. 
i) sort the edges of G in increasing order by length ii) keep a subgraph S of G initially empty iii) builds a 
tree one vertex at a time 
A) i, and ii only B) ii and iii only C) i  and iii only D) All i, ii and iii 

42.  Rather than build a subgraph one edge at a time …………………………. builds a tree one vertex at a 
time.  
A) kruskal’s algorithm B) prim’s algorithm C) dijkstra algorithm D) bellman ford algorithm 

43. 3. ……………… is known as a greedy algorithm, because it chooses at each step the cheapest edge to 
add to subgraph S. 
A) Kruskal’s algorithm B) Prim’s algorithm C) Dijkstra algorithm D) Bellman ford algorithm 

44. The result of prim’s algorithm is a total time bound of ……………… 
A) O(logn) B) O(m+n logn)  C) O(mn) D) O(m logn) 

45. The ………………… process updates the costs of all the vertices V, connected to a vertex U, if we 
could improve the best estimate of the shortest path to V by including (U,V) in the path to V. 
A) relaxation B) improvement  C) shortening D) Costing 

46.  …………….. turns out that one can find the shortest paths from a given source to all points in a graph in 
the same time. 
A) Kruskal’s algorithm B) Prim’s algorithm C) Dijkstra algorithm D) Bellman ford algorithm 

47.  ……………. keeps two sets of vertices; S, the set of vertices whose shortest paths from the source have 
already been determined and V-S, the remaining vertices. 
A) Kruskal’s algorithm B) Prim’s algorithm C) Dijkstra algorithm D) Bellman ford algorithm 

48. …………….. is a more generalized single source shortest path algorithm which can find t he shortest 
path in a graph with negative weighted edges. 
A) Kruskal’s algorithm B) Prim’s algorithm C) Dijkstra algorithm D) Bellman ford algorithm 

49. A sample application of …………….. algorithm is to solve critical path problem, i.e. finding the longest 
path through a DAG. 
A) DAG application path algorithm B) DAG shortest path algorithm 
C) DAG critical path algorithm  D) Bellman ford algorithm 

50. The floyd-warshall all pairs shortest path algorithm computes the shortest paths between each pair of 
nodes in ………………….. 
A) O(logn) B) O(n^2) C) O(mn) D) O(n^3) 

51. In a directed graph, the …………….. can compute  the  transitive hull in O(n^3) 
A) Transitive Hull B) Minimax Distance C) Max Min Distance D) Safest Path 
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52. ……………… means, for all vertices, compute its reachability. 
A) Transitive Hull B) Minimax Distance C) Max Min Distance D) Safest Path 

53.  For a directed graph with edge lengths, the floyd warshall algorithm can compute the …………….. 
between each pair of nodes in O(n^3). 
A) Transitive Hull B) Minimax Distance C) Max Min Distance D) Safest Path 

54. Given a directed graph where the edges are labeled with survival probabilities, we can compute the 
…………… between the two nodes with floyd warshall. 
A) Transitive Hull B) Minimax Distance C) Max Min Distance D) Safest Path 

55. ………………… describe efficient algorithms for computing G^T from G, for both the adjacency list 
and adjacency matrix representations of G. 
A) Graph transpose problem  B) Strongly connected components problem 
C) Topological sort problem D) Euler path problem 

56.  In …………… input is a directed acyclic graph (DAG)G=(V,E). 

A) Graph transpose problem B) Strongly connected components problem 
C) Topological sort problem D) Euler path problem 

57.  In …………………., a directed graph G is acylic if and only if a DFS of G yields no back edge. 
A) Graph transpose problem  B) Strongly connected components problem 
C) Topological sort problem D) Euler path problem 

58. …………….. is a most generalized single source shortest path algorithm to find the shortest path in a 
graph even with negative weights. 
A) Kruskal’s algorithm B) Prim’s algorithm C) Dijkstra algorithm D) Bellman ford algorithm 

59. ………………… solves the problem of finding the shortest path from a point in a graph to a destination. 
A) Kruskal’s algorithm B) Prim’s algorithm C) Dijkstra algorithm D) Bellman ford algorithm 

60.  Dijkstra algorithm is also called the  …………………. shortest path problem. 
A) multiple source  B) single source  C) single destination D) multiple destination 

Answers 
1. A) i, and ii only 
2. B) prim’s algorithm 
3. A) Kruskal’s algorithm 
4. B) O(m+n logn) 
5. A) relaxation 
6. C) Dijkstra algorithm 
7. C) Dijkstra algorithm 
8. D) Bellman ford algorithm 
9. B) DAG shortest path algorithm 
10. D) O(n^3) 
11. A) Transitive Hull 

12. A) Transitive Hull 
13. B) Minimax Distance 
14. D) Safest Path 
15. A) Graph transpose problem 
16. C) Topological sort problem 
17. C) Topological sort problem 
18. D) Bellman ford algorithm 
19. C) Dijkstra algorithm 
20. B) single source 

 

 
 
5 Marks 
1. Explain in detail about types of trees. 
2. Write short notes on heap tree. 
3. Discuss in detail about tree terminologies. 
4. Write notes on graph terminologies. 
5. Give a detail note on minimum spanning tree. 
6. Write in detail about operations of tree. 
7. Write in detail about operations of graphs. 
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10 Marks 
1. What is Binary Tree? Explain Representation of Binary tree. Also explain different operation that can be 

performed on Binary tree. 
2. Explain Inorder, Preorder and Postorder Traversal operation on Binary tree with example. 
3. List the types of Binary Search Tree. Explain Insertion and Deletion Operation on Binary Search Tree with 

Example. 
4. Explain in detail about red black tree with example. 
5. Explain the various representation of graph with example in detail? 
6. Explain Dijkstra's algorithm with an example? 
7. Explain Prim's algorithm with an example? 
8. Explain Krushal's algorithm with an example? 
 

 

 

 

 

 

---------------------------------------------END--------------------------------------- 
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UNIT – V 
 

SEARCHING 
 

What is searching? 
 Searching is the process of finding a given value position in a list of values. 
 It decides whether a search key is present in the data or not. 
 It is the algorithmic process of finding a particular item in a collection of items. 
 It can be done on internal data structure or on external data structure. 
 There are two types of search, 

1. Linear search 
2. Non-linear search 

Searching Techniques 
 To search an element in a given array, it can be done in following ways. 

1. Sequential Search/Linear Search. 
2. Binary Search 

1. Sequential Search/Linear Search 
 Linear search is a very simple search algorithm. 
 In this type of search, a sequential search is made over all items one by one. 
 Every item is checked and if a match is found then that particular item is returned, otherwise the 

search continues till the end of the data collection. 

 
i) Linear Search with Array: 
 Start the search from the first element and continue till you get the element (or reach end of the 

array). 
 
 
 

 
ii) Linear Search with linked list: 
 Our sequential search function for linked lists will take two arguments, 

1. A pointer to the first element in the list. 
2. The value for which we are searching. 

 The function will return a pointer to the list structure containing the correct data, or will return 
NULL if the value wasn't found. 

 
iii) Linear Search with ordered  list: 
 In order to implement the ordered list, we must remember that the relative positions of the items 

are based on some underlying characteristic. 
 The ordered list of integers given above (17, 26, 31, 54, 77, and 93) can be represented by a 

linked structure as shown below. 
 Again, the node and link structure is ideal for representing the relative positioning of the items. 
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2. Binary Search/Non Linear Search 

 Binary Search is used for searching an element in a sorted array. 
 It is a fast search algorithm with run-time complexity of O(log n). 
 Binary search works on the principle of divide and conquer. 
 This searching technique looks for a particular element by comparing the middle most element 

of the collection. 
 It is useful when there are large numbers of elements in an array. 

 
SORTING 
What is sorting? 

 Sorting refers to arranging data in a particular format. Sorting algorithm specifies the way to arrange 
data in a particular order. 

 Most common orders are in numerical or lexicographical order. 
 The importance of sorting lies in the fact that data searching can be optimized to a very high level, if 

data is stored in a sorted manner. 
 Sorting is also used to represent data in more readable formats. 
 Following are some of the examples of sorting in real-life scenarios − 

Telephone Directory: 
 The telephone directory stores the telephone numbers of people sorted by their names, so that the 

names can be searched easily. 
Dictionary: 
 The dictionary stores words in an alphabetical order so that searching of any word becomes easy. 

TERMINOLOGY: 
What are Internal sorting? 
 When all data that needs to be sorted cannot be placed in-memory at a time, the sorting is 

called internal sorting. 
What is External Sortings? 
 External Sorting is used for massive amount of data. 
 Merge Sort and its variations are typically used for external sorting. 
 Some external storage like hard-disk, CD, etc is used for external storage. 

When all data is placed in-memory, then sorting is called internal sorting. 
SORTING TECHNIQUES: 
In-place Sorting  
 Algorithms may require some extra space for comparison and temporary storage of few data 

elements. 
 These algorithms do not require any extra space and sorting is said to happen in-place.  

Example: Bubble sort is an example of in-place sorting. 

http://en.wikipedia.org/wiki/External_sorting
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Not-in-place Sorting 
 Algorithms requires space which is more than or equal to the elements being sorted. 
 Sorting which uses equal or more space is called not-in-place sorting. 

Example: Merge-sort is an example of not-in-place sorting. 
 
 
Stable Sorting: 

 If a sorting algorithm, after sorting the contents, does not change the sequence of similar content in 
which they appear, it is called stable sorting. 

 
Not Stable Sorting: 

 If a sorting algorithm, after sorting the contents, changes the sequence of similar content in which 
they appear, it is called unstable sorting. 

 
Adaptive Sorting Algorithm  

 A sorting algorithm is said to be adaptive, if it takes advantage of already 'sorted' elements in the list 
that is to be sorted. 

 That is, while sorting if the source list has some element already sorted, adaptive algorithms will 
take this into account and will try not to re-order them. 

Non-Adaptive Sorting Algorithm 
 A non-adaptive algorithm is one which does not take into account the elements which are already 

sorted. 
 They try to force every single element to be re-ordered to confirm their sortedness. 

 
BUBBLE SORT 

 Bubble sort is a simple sorting algorithm. 
 This sorting algorithm is comparison-based algorithm in which each pair of adjacent elements is 

compared and the elements are swapped if they are not in order. 
 This algorithm is not suitable for large data sets as its average and worst case complexities are of Ο 

(n2) where n is the number of items. 
How Bubble Sort Works? 
 We take an unsorted array for our example. 
 Bubble sort takes Ο(n2) time so we're keeping it short and precise. 

 
 Bubble sort starts with very first two elements, comparing them to check which one is greater. 
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 In this case, value 33 is greater than 14, so it is already in sorted locations. Next, we compare 33 
with 27. 

 
 We find that 27 is smaller than 33 and these two values must be swapped. 

 
 The new array should look like this − 

 
 Next we compare 33 and 35. We find that both are in already sorted positions. 

 
 

 Then we move to the next two values, 35 and 10. 

 
 We know then that 10 is smaller 35. Hence they are not sorted. 

 
 We swap these values. 
 We find that we have reached the end of the array. 
 After one iteration, the array should look like this − 

 
 To be precise, we are now showing how an array should look like after each iteration. After the 

second iteration, it should look like this − 

 
 Notice that after each iteration, at least one value moves at the end. 

 
 And when there's no swap required, bubble sorts learns that an array is completely sorted. 

 
 Now we should look into some practical aspects of bubble sort. 

 
Algorithm 
Begin BubbleSort (list) 
   for all elements of list 
      If list[i] > list [i+1] 
         Swap (list[i], list [i+1]) 
      End if 
   End for 
      Return list 
   End Bubble Sort 
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INSERTION SORT 

 This is an in-place comparison-based sorting algorithm. 
 Here, a sub-list is maintained which is always sorted. 
 For example, the lower part of an array is maintained to be sorted. 
 An element which is to be 'inserted in this sorted sub-list, has to find its appropriate place and then it 

has to be inserted there. 
 Hence the name, insertion sorts. 
 The array is searched sequentially and unsorted items are moved and inserted into the sorted sub-list 

(in the same array). 
 This algorithm is not suitable for large data sets as its average and worst case complexity are of 

Ο(n2), where n is the number of items. 
How Insertion Sort Works? 

 We take an unsorted array for our example. 

 
 Insertion sort compares the first two elements. 

 
 It finds that both 14 and 33 are already in ascending order. 
 For now, 14 is in sorted sub-list. 

 
 Insertion sort moves ahead and compares 33 with 27. 

 
 And finds that 33 is not in the correct position. 

 
 It swaps 33 with 27. It also checks with all the elements of sorted sub-list. 
 Here we see that the sorted sub-list has only one element 14, and 27 is greater than 14. 
 Hence, the sorted sub-list remains sorted after swapping. 

 
 By now we have 14 and 27 in the sorted sub-list. Next, it compares 33 with 10. 

 
 These values are not in a sorted order. 

 
 So we swap them. 

 
 However, swapping makes 27 and 10 unsorted. 

 
 Hence, we swap them too. 

 
 Again we find 14 and 10 in an unsorted order. 
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 We swap them again. By the end of third iteration, we have a sorted sub-list of 4 items. 

 
 This process goes on until all the unsorted values are covered in a sorted sub-list. 
 Now we shall see some programming aspects of insertion sort. 

 
SELECTION SORT 

 Selection sort is a simple sorting algorithm. 
 This sorting algorithm is an in-place comparison-based algorithm in which the list is divided into 

two parts, the sorted part at the left end and the unsorted part at the right end. 
 Initially, the sorted part is empty and the unsorted part is the entire list. 
 The smallest element is selected from the unsorted array and swapped with the leftmost element, 

and that element becomes a part of the sorted array. 
 This process continues moving unsorted array boundary by one element to the right. 
 This algorithm is not suitable for large data sets as its average and worst case complexities are of Ο 

(n2), where n is the number of items. 
 

How Selection Sort Works? 
 

 Consider the following depicted array as an example. 

 
 For the first position in the sorted list, the whole list is scanned sequentially. The first position 

where 14 is stored presently, we search the whole list and find that 10 is the lowest value. 
 

 
 So we replace 14 with 10. After one iteration 10, which happens to be the minimum value in the list, 

appears in the first position of the sorted list. 
 

 
 For the second position, where 33 is residing, we start scanning the rest of the list in a linear 

manner. 
 

 
 We find that 14 is the second lowest value in the list and it should appear at the second place. We 

swap these values. 
 

 
 After two iterations, two least values are positioned at the beginning in a sorted manner. 

 

 
 The same process is applied to the rest of the items in the array. 
 Following is a pictorial depiction of the entire sorting process – 
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MERGE SORT 
 Merge sort is a sorting technique based on divide and conquer technique. 
 With worst-case time complexity being Ο(n log n), it is one of the most respected algorithms. 
 Merge sort first divides the array into equal halves and then combines them in a sorted manner. 

 
How Merge Sort Works? 

 To understand merge sort, we take an unsorted array as the following − 

 
 We know that merge sort first divides the whole array iteratively into equal halves unless the atomic 

values are achieved. 
 We see here that an array of 8 items is divided into two arrays of size 4. 

 
 This does not change the sequence of appearance of items in the original. 
 Now we divide these two arrays into halves. 

 
 We further divide these arrays and we achieve atomic value which can no more be divided. 

 
 Now, we combine them in exactly the same manner as they were broken down. Please note the 

color codes given to these lists. 
 We first compare the element for each list and then combine them into another list in a sorted 

manner. 
 We see that 14 and 33 are in sorted positions. 
 We compare 27 and 10 and in the target list of 2 values we put 10 first, followed by 27. 
 We change the order of 19 and 35 whereas 42 and 44 are placed sequentially. 

 
 In the next iteration of the combining phase, we compare lists of two data values, and merge them 

into a list of found data values placing all in a sorted order. 

 
 After the final merging, the list should look like this − 

 
 Now we should learn some programming aspects of merge sorting. 

 
 
QUICK SORT 
 
 Quick sort is a highly efficient sorting algorithm and is based on partitioning of array of data into 

smaller arrays. 
 A large array is partitioned into two arrays one of which holds values smaller than the specified 

value, say pivot, based on which the partition is made and another array holds values greater than 
the pivot value. 

 Quick sort partitions an array and then calls itself recursively twice to sort the two resulting 
subarrays. 
 

Partition in Quick Sort 
 Following animated representation explains how to find the pivot value in an array. 
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 The pivot value divides the list into two parts. And recursively, we find the pivot for each sub-lists 

until all lists contains only one element.  
 Now, let us learn some programming aspects of selection sort. 

HEAP SORT 
 Heap sort is a comparison based sorting algorithm. 
 It is a special tree-based data structure. 
 Heap sort is similar to selection sort. The only difference is, it finds largest element and places it at 

the end. 
 This sort is not a stable sort. It requires a constant space for sorting a list. 
 It is very fast and widely used for sorting. 
 It has following two properties: 

1. Shape Property 
2. Heap Property 

Shape Property 
 Shape property represents all the nodes or levels of the tree are fully filled. 
 Heap data structure is a complete binary tree. 

 

 
Heap property  
 Heap property is a binary tree with special characteristics. 
 It can be classified into two types, 
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1. Max-Heap. 
2. Min Heap. 

Max Heap: 
 If the parent nodes are greater than their child nodes, it is called a Max-Heap. 

Min Heap: 
 If the parent nodes are smaller than their child nodes, it is called a Min-Heap 
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UNIT- V 
Question Bank 

 
One word question and answers: 

1. Is there any difference in the speed of execution between linear serach(recursive) vs linear 
search(lterative)? 
a) Both execute at same speed b) Linear search(recursive) is faster  
c) Linear search(Iterative) is faster  d) Cant be said   Answer: c 

2. Is the space consumed by the linear search(recursive) and linear search(iterative) same? 
a) No, recursive algorithm consumes more space b) No, recursive algorithm consumes less space c) 
Yes d) Nothing can be said       Answer: a 

3. What is the worst case runtime of linear search(recursive) algorithm? 
a) O(n) b) O(logn) c) O(n2) d) O(nx)    Answer: a 

4. Linear search(recursive) algorithm used in _____________ 
a) When the size of the dataset is low b) When the size of the dataset is large 
c) When the dataset is unordered d) Never used    Answer: a 

5. What is the best case runtime of linear search(recursive) algorithm on an ordered set of elements? 
a) O(1)  b) O(n) c) O(logn) d) O(nx)    Answer: a 

6. What is the recurrence relation for the linear search recursive algorithm? 
a) T(n-2)+c b) 2T(n-1)+c c) T(n-1)+c d) T(n+1)+c   Answer: c 

7. What is the worst case complexity of binary search using recursion? 
a) O(nlogn) b) O(logn) c) O(n)  d) O(n2)   Answer: b 

8. What is the average case time complexity of binary search using recursion? 
a) O(nlogn) b) O(logn) c) O(n)  d) O(n2)   Answer: b 

9. What is the time complexity of binary search with iteration? 
a) O(nlogn) b) O(logn) c) O(n)  d) O(n2)   Answer: b 

10. How many passes does an insertion sort algorithm consist of? 
a) N  b) N-1  c) N+1  d) N2    Answer: b 
Explanation: An insertion algorithm consists of N-1 passes when an array of N elements is given. 

11. 2. Which of the following algorithm implementations is similar to that of an insertion sort? 
a) Binary heap b) Quick sort c) Merge sort d) Radix sort   Answer: a 
Explanation: Insertion sort is similar to that of a binary heap algorithm because of the use of 
temporary variable to swap. 

12. 3. What is the average case running time of an insertion sort algorithm? 
a) O(N)  b) O(N log N) c) O(log N) d) O(N2)   Answer: d 

13. Which of the following real time examples is based on insertion sort? 
a) arranging a pack of playing cards b) database scenarios and distributes scenarios 
c) arranging books on a library shelf d) real-time systems   Answer: a 

14. Which of the following sorting algorithms is the fastest for sorting small arrays? 
a) Quick sort b) Insertion sort  c) Shell sort  d) Heap sort Answer: b 

15. For the best case input, the running time of an insertion sort algorithm is? 
a) Linear b) Binary  c) Quadratic d) Depends on the input Answer:  

16. Which of the following examples represent the worst case input for an insertion sort? 
a) array in sorted order b) array sorted in reverse order c) normal unsorted array 
d) large array         Answer: b 

17. Which of the following sorting algorithm is best suited if the elements are already sorted? 
a) Heap Sort b) Quick Sort c) Insertion Sort  d) Merge Sort  Answer: c 

18.  Which of the following is not an exchange sort? 
a) Bubble Sort b) Quick Sort c) Partition-exchange Sort d) Insertion Sort Answer: d 

19. What is an external sorting algorithm? 
a) Algorithm that uses tape or disk during the sort  
b) Algorithm that uses main memory during the sort 
c) Algorithm that involves swapping d) Algorithm that are considered ‘in place’ Answer: a 

20.  What is an internal sorting algorithm? 
a) Algorithm that uses tape or disk during the sort b) Algorithm that uses main memory 
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during the sort 
c) Algorithm that involves swapping d) Algorithm that are considered ‘in place’Answer: b 

21. What is the average case complexity of bubble sort? 
a) O(nlogn) b) O(logn) c) O(n)  d) O(n2)   Answer: d 

22. Merge sort uses which of the following technique to implement sorting? 
a) backtracking b) greedy algorithm c) divide and conquer d) dynamic programming 
Answer: c 

23.  Which of the following is not in place sorting algorithm? 
a) merge sort b) quick sort c) heap sort d) insertion sort   Answer: a 

24. Which of the following stable sorting algorithm takes the least time when applied to an almost sorted 
array? 
a) Quick sort b) Insertion sort  c) Selection sort  d) Merge sort Answer: d 

25. Which of the following sorting algorithm makes use of merge sort? 
a) tim sort b) intro sort c) bogo sort d) quick sort   Answer: a 

 
5 Marks 
 

1. Write notes on linear searching algorithm. 
2. Explain about binary tree searching. 
3. Write about sorting terminology. 
4. Discuss about quick sort. 
5. Write an algorithm of selection sort. 

10 Marks 
 

1. Write notes on linear searching techniques. 
2. Write notes on bubble sort with example. 
3. Discuss in detail about merge sort with example. 
4. Write in detail about non linear searching. 
5. Discuss about unordered list. 

 
 
 
 
 

_____________END____________ 
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